Papers by Author: Xu Dong Lv

Paper TitlePage

Authors: Xue Tao Yuan, Xu Dong Lv, Zhi Qiang Hua, Lei Wang, Tao Li
Abstract: Anodic polarization behavior of ternary alloy Pb-0.08%Ca-1%Sn is studied by potentiodynamic polarization measurements, corrosion rate, the products on electrode surface after polarization, and microstructure of anode mud after polarization in electrowinning cell. The results show that Pb-Ca-Sn anode is easy to be passivated in electrolyte for copper electrowinning, the maintaining passivity current density is 97.72 µA•cm-2 and the corrosion products on the surface of Pb-Ca-Sn electrode present loose scaly, being composed of α-PbO2, β- PbO2 and PbSO4 after polarization.
Authors: Yun Yi Wu, Lei Wang, Zhi Qiang Hua, Tao Li, Xue Tao Yuan, Xu Dong Lv
Abstract: Pure, La3+ doped at A site, V5+ doped at B site, and La3+ and V5+ co-doped ferroelectric Bi4Ti3O12 (BTO), Bi3.25La0.75Ti3O12 (BLT), Bi4Ti2.98V0.02O3 (BTV) and Bi3.25La0.75Ti2.98V0.02O12 (BLTV) were successfully prepared by conventional sintering technique. The structures of the ceramics were investigated by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. X-ray diffraction indicated that assemblages of all sintered ceramics consist of a single phase of Bi4Ti3O12, implying that the A-site La3+ and B-site V5+ substitutions in this case do not affect the layered structure. Among these ceramics, BLTV ceramic exhibited the best electrical properties. The leakage current density of BLTV ceramic was only 1.3×10-4 Acm-2 at 40 KVcm-1, two orders of magnitude lower than BTO ceramic. Besides, a saturated ferroelectric hysteresis loops with largest remnant polarization 2Pr of 30.6μC/cm2 was observed for this sample. These suggested that the co-doped Bi4Ti3O12 ceramic by La3+ and V5+ at A and B sites showed advantages in application over the pure BTO, doped BLT and BTV ceramic, respectively.
Authors: Xu Dong Lv, Xue Tao Yuan, Zhi Qiang Hua, Lei Wang, Tao Li, Yu Gao Zhou, Zhi Wei Wei
Abstract: Prepared lead dioxide(PbO2) coating on a Ti substrate by pulse current technique. The effect of the pulse current density, pulse time and relaxation time on the morphology and electrochemistry properties of the coating was studied by means of scanning electron microscopy and electrochemistry station. Compared with lead dioxide fabricate by common electroplate technique, lead dioxide coating prepared by pulse current technique is more dense, without hole, better corrosion resisting property and more stable electrochemistry properties.
Showing 1 to 3 of 3 Paper Titles