Papers by Author: Yue Sheng Wang

Paper TitlePage

Authors: Chong Hong Zhang, Yue Sheng Wang, K.Q. Chen, Ji Guo Sun, J.M. Quan, Chang Qi Chen
Abstract: Low-activation Fe-Cr-Mn alloy and 316L stainless steel were irradiated with 92 MeV Ar ions at about 500°C, to fluences of 0.8~1.7×1021 ions m-2 .After irradiation, cross-sectional specimens were investigated with transmission electron microscopy.Cavities with high number density were observed in the peak dose regions. The cavity number density reaches maximum at Ar concentration peak, while cavity mean size is consistent with displacement damage profile. It is indicated that Ar atoms can enhance cavity formation in a manner similar to helium. There are thresholds of dose and dose rate for the bi-modal size distribution of cavities. The significant growth of a small portion of cavities in the peak damage region at the highest ion-fluence is ascribed to the effect of interactive sink strength of cavities.
1459
Authors: Guo Shuang Shui, Yue Sheng Wang, Jian Min Qu
Abstract: In this paper, a new theoretical model is developed to characterize the damage of the adhesive joint. Elastic modulus of adhesive joints is an important parameter to represent damage characteristics. Based on the fact that the thickness of the adhesive layer is very small, it is reasonable to believe that damage will decrease the tension modulus of the adhesive joint while the compression modulus will keep unchanged. Modeling the adhesive joint as an interface with different modulus in tension and compression, and applying integral transform method, we solve the associated nonlinear boundary problem to obtain the nonlinear ultrasonic waves transmitting through the adhesive layer. With this nonlinear ultrasonic wave, variation of elastic modulus and damage variable of the adhesive layer are thereafter characterized nondestructively by a nonlinear coefficient.
339
Authors: Y.S. Tarng, S.T. Cheng, Yue Sheng Wang
263
Authors: Gan Yun Huang, Yue Sheng Wang
645
Authors: Jing Jing Li, Ya Fang Guo, Yue Sheng Wang, Chang Hai Tian
Abstract: In this paper, the continuous in-situ observations of the fatigue crack growth in U71Mn and U75V rail steel are made by using the scanning electronic microscope (SEM). The microstructure patterns of cracks under the mode I fatigue loads and quasi-static loads are presented. The results indicate that the short fatigue crack growth in rail steel is a quasi-cleavage fracture. The ductility and the performance of fatigue resistance of U71Mn rail steel are better than those of U75V rail steel.
807
Authors: Zong Jian Yao, Gui Lan Yu, Yue Sheng Wang, Jian Bao Li
Abstract: The improved supercell plane wave expansion method is applied to theoretically study the propagation of flexural waves in a ternary locally resonant phononic crystal thin plate with a point defect and linear defects. The thin concrete plate composed of a square array of steel cylinders hemmed around by rubber is considered here. Absolute band gaps in low frequency are obtained. For the point defect, the defect mode is localized around the defect, and the magnitude of the resonant defect mode is strongly dependent on the defect filling fraction, mass density and Young’s modulus of the defect cylinder. For the straight linear defects, several resonant linear defect bands appear inside the absolute band gap. And the displacement distributions show that the flexural waves could well propagate along the linear defects.
1282
Authors: A Li Chen, Yue Sheng Wang, Chuan Zeng Zhang
Abstract: In this paper, combined with the supercell technique, the plane wave expansion method is used to calculate the band structures of the two-dimensional phononic crystals with line defects and the random disorders in either radius or location of the scatterers. Phononic systems with plumbum scatterers embedded in an epoxy matrix are calculated in detail. The influences of the random disorder on the band structures of anti-plane waveguiding modes will be discussed. The displacement distributions are calculated to show the wave localization phenomenon. Propagation of the guided wave in the phononic crystals with different disordered degree is studied. The analysis is relevant to the assessment of the influences of manufacture errors on wave behaviors in waveguiding phononic crystals as well as the possible control of wave propagation by intentionally introducing disorders into the systems.
352
Authors: A Li Chen, Yue Sheng Wang, Chuan Zeng Zhang
Abstract: Combined with the supercell technique, the plane wave expansion method is used to calculate the band structures for the in-plane wave of the two-dimensional solid-solid phononic crystals with line defects and the random disorders in either radius or location of the scatterers. The influences of the random disorders on the band structures and guided waves will be discussed. Propagation of the wave with one certain frequency in the waveguiding phononic crystals with different disorder degree is studied.
1233
Authors: Wen Ping Wu, Ya Fang Guo, Yue Sheng Wang
Abstract: A quantitative life prediction method has been proposed to evaluate fatigue life during morphological evolution of precipitates in Ni-based superalloys. The method is essentially based on Eshelby’s equivalent inclusion theory and Mori-Tanaka’s mean field method. The shape stability and life prediction are discussed when the external stress and matrix plastic strain are applied. The calculated results show that the fatigue life is closely related with microstructures evolution of precipitates. The magnitude and sign of the external stress and matrix plastic strain have an important effect on fatigue life of Ni-based superalloys during the morphological evolution of precipitates.
221
Showing 1 to 10 of 16 Paper Titles