Papers by Author: Zhan Li Liu

Paper TitlePage

Authors: Yu Wang, M. Chen, L.Z. Qi, Zhan Li Liu, Kai Lun Yao, Q.L. Wang
Authors: Li Zhang, Zhan Li Liu, Zhuo Zhuang, T. Kanayama
Abstract: The response analysis of reinforced concrete (RC) structures subjected to strong earthquake motions require realistic conceptual models. The special models, such as Clough and Takeda, which describe the non-linear section characteristic of reinforced concrete beam and column. In the earthquake motions, the deforming is sensitive to the response of structures intensively. The traditional lumped plastic model inevitably induces inaccuracy. Hence, meshing the members or distributing stiffness along the whole member is employed to simulate the seismic response of the structures. In this paper, Takeda elastic-plastic beam element model has been developed, which is based on general FEM code ABAQUS in order to simulate the response of RC. The influence is discussed due to the different lengths of plastic zone and element sizes.
Authors: Zhuo Zhuang, Zhan Li Liu, Xiao Chuan You, Y. Guo
Abstract: With the development of material science, especially as MEMS/NEMS are playing a more and more important role in modern engineering, some mechanical behaviors of materials, e.g., fracture, shear instability, need to be investigated from multidisciplinary perspective. The molecular dynamics (MD) simulations are performed on single-crystal copper block under simple shear to investigate the size and strain rate effects on the mechanical responses of face-centered cubic (fcc) metals. It is shown that the yield stress decreases with the specimen size and increases with the strain rate. Based on the theory of dislocation nucleation, a modified power law is proposed to predict the scaling behavior of fcc metals. In the MD simulations with different strain rates, a critical strain rate exists for each single-crystal copper block of given size, below which the yield stress is nearly insensitive to the strain rate. A hyper-surface is therefore formulated to describe the combined size and strain rate effects on the plastic yield stress of fcc metals.
Showing 1 to 3 of 3 Paper Titles