Papers by Author: Zhu Ju Wang

Paper TitlePage

Authors: Zhu Ju Wang, Wen Bo Han, Shu Qing Tao, Ying Wu
Abstract: Over the last 100 years innovative techniques in the fabrication of ceramics have led to their use as high-tech materials. Inert bioceramics, such as ZrO2, have inherently low level of reactivity compared with other materials such as polymers and metals as well as surface reactive or resorbable ceramics. The aim of this study was to validate the effect of incision using a zirconia inert bioceramic scalpel to incise animal body and to prove incision property of tissues before clinic. The experiments of incisions concrescence using a sterilized Zirconia inert bioceramic scalpel were investigated in this paper. We used 4-month-old inbred line SD rats as experiment animals. They were divided into three groups to undergo incision on the back skin and subcutaneous tissue. The subcutaneous tissue and musculature samples were obtained and analyzed by optical microscopy at 3, 7 and 14 days for histopathological evaluation respectively. The experimental results showed that no wound dehiscence was observed after suture removal at 14 days after the operation. The experiments proved that an inert bioceramic scapel was nontoxic, nonallergenic, and noncarcinogenic for incisions that obtained normal concrescence criteria two weeks after operation.
2115
Authors: Wen Bo Han, Zhu Ju Wang
Abstract: Hydroxyapatite is a kind of ideal biomaterials for bone and teeth replacement, but its low strength and brittleness need to improve. As bone replacing materials, hydroxyapatite (HAP) and zirconia both have advantage and disadvantage. Nano-sized HAP-ZrO2 powders and HAP-TZP (3Y) (3mol% yttria - stabilized cubic zirconia) bioceramic for artificial joint have been fabricated in this paper. The nano-sized HAP-ZrO2 powders with homogeneous distribution could be synthesized by two-step precipitation method. The HAP-TZP bioceramic with small grain size could be obtained by using hot-press sintering technology, and the sintering parameters are: sintering temperatures T=1300°C, sintering pressure p=30MPa and sintering time t=30min. The mechanical properties, microstructures and fracture pattern that were analyzed by SEM and optical microscopy of the HAP-TZP bioceramic were investigated systematically. The results show that no reaction between HAP and ZrO2 powders, which could be attributed to the very short sintering time of hot press sintering.
2119
Showing 1 to 2 of 2 Paper Titles