Papers by Author: Danieli A.P. Reis

Paper TitlePage

Authors: Danieli A.P. Reis, Carlos de Moura Neto, Antônio Augusto Couto, Cosme Roberto Moreira Silva, Francisco Piorino Neto, M.J.R. Barboza
Abstract: Thermomechanical and electrical properties of zirconia-based ceramics have led to a wide range of advanced and engineering ceramic applications like solid electrolyte in oxygen sensors, fuel cells and furnace elements and its low thermal conductivity has allowed its use for thermal barrier coatings for aerospace engine components. A comparison between CoNiCrAlY bond coat and zirconia plasma sprayed coatings on creep tests of the Ti-6Al-4V alloy was studied. The material used was commercial Ti-6Al-4V alloy. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. Constant load creep tests were conducted on a standard creep machine in air on coated samples, at stress levels of 520 MPa at 500°C to evaluate the oxidation protection on creep of the Ti-6Al-4V alloy. Results indicate that the creep resistance of the ceramic coating was greater than metallic coating.
30
Authors: Danieli A.P. Reis, Carlos de Moura Neto, M.M. Silva, Mario Ueda, V.S. Oliveira, Antônio Augusto Couto
Abstract: The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190oC by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treat-ment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76x10-3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance.
225
Authors: Adriano G. Reis, Danieli A.P. Reis, Carlos de Moura Neto, Javier Onõro, H.S. Oliveira, Antônio Augusto Couto
Abstract: The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190oC by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance.
229
Authors: Tarcila Sugahara, Karina Martinolli, Danieli A.P. Reis, Carlos de Moura Neto, Antônio Augusto Couto, F. Piorino Neto, M.J.R. Barboza
Abstract: A superalloy is an alloy developed for elevated temperature service, where relatively severe mechanical stressing is encountered, and where high surface stability is frequently required. High temperature deformation of Ni-base superalloys is very important since the blades and discs of aero engine turbine, because need to work at elevated temperature for an expected long period. The nickel-base alloy Inconel 718 has being investigated because it is one of the most widely used superalloys. The objective of this work was to evaluate the creep behavior of the Inconel 718 focusing on the determination of the experimental parameters related to the primary and secondary creep states. Constant load creep tests were conducted with at 650, 675 and 700°C and the range of stress was from 625 to 814 MPa to according to ASTM E139 standard. The relation between primary creep time and steady-state creep rate, obeyed the equation for both atmospherics conditions at 650, 675 and 700°C. The microstructural characterization employing the technique of scanning electron microscopy has been a valuable tool for understanding the mechanisms of creep.
509
Authors: Danieli A.P. Reis, Carlos de Moura Neto, M.J.R. Barboza, H.R. Silva, Cosme Roberto Moreira Silva, Antônio Augusto Couto
Abstract: The proposal of this research has been the study of the plasma spayed coating on creep of the Ti-6Al-4V, focusing on the determination of the experimental parameters related to the first and second creep stages. Yttria (8 wt %) stabilized zirconia (YSZ) (Metco 204B-NS) with CoNiCrAlY ( AMDRY 995C) has been plasma sprayed coated on Ti-6Al-4V substrate. Creep tests with constant load had been done on Ti-6Al-4V coated samples, the stress level was from 250 to 319 MPa at 600 °C. Highest values of tp and the decrease of the second stage rate had shown a better creep resistance on coated sample. Results indicate that the coated sample was greater than uncoated sample, thus the plasma sprayed coating prevent the sample oxidation efficiently.
221
Authors: L.A.N.S. Briguente, Antônio Augusto Couto, Nara Miranda Guimarães, Danieli A.P. Reis, Carlos de Moura Neto, M.J.R. Barboza
Abstract: Ti-6Al-4V is the most used of titanium alloy and presents some important properties as metallurgical stability, high specific strength, corrosion and creep resistance [. The aim of this study is to evaluate the creep behavior of Ti-6Al-4V alloy with equiaxed and bimodal microstructures and determine the creep parameters of Ti-6Al-4V in these conditions. It was used a Ti-6Al-4V alloy forged and annealed at 190°C for 6 hours and cooled in air. The material in this condition shows an equiaxed microstructure. For bimodal microstructure, the material was heat-treated at 950°C for 60 minutes and cooled in water until room temperature. After this the material was heat-treated at 600°C for 24 hours and cooled in air until room temperature. Creep tests were performed at 600°C in stress conditions of 125, 250 and 319 MPa at constant load. The alloy with Bimodal microstructure shows higher creep resistance with a longer life time in creep.
520
Authors: Danieli A.P. Reis, Antônio Augusto Couto, N.I. Domingues Jr., Ana Cláudia Hirschmann, S. Zepka, Carlos de Moura Neto
Abstract: Aluminum alloys have low specific weight, relatively high strength and high corrosion resistance and are used in many applications. Aluminum Alloy 2024 is widely used for aircraft fuselage structures, owing to its mechanical properties. In this investigation, Aluminum Alloy 2024 was given solid solution treatments at 495, 505, and 515°C followed by quenching in water. It was then artificially aged at 190 and 208°C. Subsequently, hardness measurements, tensile tests as well as impact and fatigue tests were carried out on the heat treated alloys to determine the mechanical properties. The tensile and hardness tests revealed similar mechanical properties for specimens of this alloy that were given the three solid solution treatments. Aluminum Alloy 2024 specimens that were solid solution treated at 515°C and artificially aged at 208°C for 2h exhibited the highest yield and tensile strength. In general, the increase in strength was accompanied by a decrease in ductility. Cyclic fatigue studies were conducted with symmetric tension-compression stresses at room temperature, using a bending-rotation test machine. The alloy solution heat treated at 515°C and aged at 208°C/2h was fatigue tested at constant frequency. The relation between stress amplitude and cycles to failure was established, enabling the fatigue strength to be predicted at more than 7.8x106 cycles, with maximum stress of 110.23 MPa. The fracture surfaces of specimens that failed after fewer cycles showed mainly precipitates and micro voids, whereas specimens that fractured after a higher number of cycles indicated that cracks initiated at the surface. The high cycle fatigue fracture surfaces revealed pores that could be due to precipitates from the matrix.
193
Authors: Tarcila Sugahara, L.A.N.S. Briguente, L.M. Yogi, Danieli A.P. Reis, Carlos de Moura Neto, M.J.R. Barboza, Antônio Augusto Couto
Abstract: This study aimed to evaluate the resistance of a Ti-6Al-4V alloy in creep after heat treatments. It was used a Ti-6Al-4V alloy in cylindrical bars forms, forged condition and annealing at 190oC for 6 hours and cooled in air. The microstructure of Ti-6Al-4V alloy was evaluated after heat treatment and was submitted to creep tests at 600oC and stress conditions from 125 to 319 MPa at constant load. The Widmanstätten structure was obtained by heat treatment. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The alloy with Widmanstätten structure and ceramic coating shows greater resistance to creep and oxidation with a longer life time in creep. At higher stress condition, 600°C and 319 MPa, the Ti-6Al-4V alloy with ceramic coating didn’t show higher creep resistance. This condition presented higher tp value and the value. It occurred because at high stress condition the coating is very fragile, decreasing your creep resistance.
235
Authors: Karina Martinolli, Tarcila Sugahara, Danieli A.P. Reis, Carlos de Moura Neto, Ana Cláudia Hirschmann, Antônio Augusto Couto
Abstract: Superalloys are used primarily in aerospace applications. These applications require a material with high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. These alloys were developed for elevated temperature service, where relatively severe mechanical stressing is encountered, and where high surface stability is frequently required. Inconel 718 has being investigated because it is one of the most widely used superalloys. Constant load creep tests were conducted on a standard creep machine at 600 and 700°C and stress levels of 300 MPa. Sets of curves and experimental parameters for the primary, secondary and tertiary regions, as a function of stress and temperature applied were obtained. The ductility, the creep rate and lifetime was evaluated.
525
Authors: Antônio Augusto Couto, A.H.P. Andrade, Danieli A.P. Reis, Jan Vatavuk
Abstract: Two SAE 1541 (0.39%C; 1.44%Mn; 0.23%Si; 0.16%Ni; 0.16%Cr) carbon steel cardan yokes that were forged, machined, quenched and tempered, as part of the manufacturing process to ensure long term operation under specific loading conditions, failed during its manufacture. The cardan yokes ruptured in the bearing seat region while these were being straightened by bending. This study deals with fracture analysis that was carried out by visual inspection and scanning electron microscopic examination. The focus of this study was to investigate the fracture mechanism associated with the failures. Fractographs of the broken components indicated that the rupture initiated at the edges of the component, from preexisting cracks, due to the bending stresses during the straightening process. The initial stage of rupture was predominantly intergranular in the tempered martensite surface layer, revealing the brittle nature of the component. Cracks were observed at regions prone to stress concentration. Eventual rupture of the component probably initiated at these cracks. This behavior is probably related to metallurgical processing steps like quenching, that causes the formation of a banded structure and promotes circumferential and radial cracking before the tempering. The fracture surface revealed regions with micro dimples and a large smooth area with some elongated inclusions. The morphology of these inclusions was cellular and originated at the grain boundaries of the primary austenite. These inclusions are probably MnS with a dendrite structure, capable of causing brittle intergranular rupture.
187
Showing 1 to 10 of 18 Paper Titles