Papers by Author: Dominique Dubé

Paper TitlePage

Authors: Sofiene Amira, M. Shehata, Dominique Dubé, R. Tremblay, Edward Ghali
Abstract: The corrosion behavior of AXJ530 magnesium alloy in 3.5% NaCl solution at 25°C and pH 7.25 has been studied. Die-cast and thixocast specimens were tested using constant immersion technique, potentiodynamic polarization measurements and electrochemical noise analysis. The microstructure of cast specimens and their surface aspect after corrosion tests were analysed and compared. The results show that thixocast specimens have the best corrosion resistance. Their superior corrosion resistance can be attributed mainly to the presence of large pre-existing α-Mg grains.
449
Authors: Hendra Hermawan, Maryam Moravej, Dominique Dubé, Michel Fiset, D. Mantovani
Abstract: The short-term need of scaffolding function of stent and the prevention of potential longterm complication of permanently implanted stent have directed to the original idea of biodegradable stent. Selecting and developing materials showing appropriate mechanical and degradation properties are key steps for the development of this new class of medical devices. Therefore, the study of their in vitro degradation behaviour is mandatory for the selection of potential candidate materials suited in vivo. In this work, the degradation behaviour of current studied biodegradable metals including three magnesium alloys (Mg, AM60B and AZ91D), pure iron and Fe-35Mn was investigated. The tests were performed in a simulated blood plasma solution at 37±0.1 oC, using three different methods; potentiodynamic polarization, static immersion, and dynamic test in a test-bench which mimics the flow condition in human coronary artery. Degradation rate was determined as ion release rate measured by using atomic adsorption spectroscopy (AAS) and also estimated from weight loss and corrosion current. Surface morphology and chemical composition of corroded specimens were analyzed by using SEM/EDS. The three degradation methods provide consistent results in corrosion tendency, where Mg showed the highest corrosion rate followed by AZ91D, AM60B, Fe-35Mn and iron. Potentiodynamic polarization gives a rapid estimation of corrosion behaviour and rate. Static immersion test shows the effect of time on the degradation rate and behaviour. Dynamic test provides the closest approach to the environment after stent implantation and its results show the effect of the flow on the materials degradation. In conclusion, the three investigated methods can be applied for screening, selecting and validating materials for degradable stent application before going further to in vivo assessments.
113
Authors: Hendra Hermawan, Dominique Dubé, D. Mantovani
Abstract: As some biomedical problems require only temporary intervention, there is a clinical need for degradable biomaterials with excellent mechanical properties and controllable degradation behaviour. Although several works were carried out on both polymeric and metallic materials, no proposed degradable biomaterial fully satisfied these requirements. Therefore a new Fe-35Mn alloy has been developed as a valid and well suited alternative. The alloy was fabricated through powder metallurgy route followed by successive cold rolling and sintering cycles. This austenitic alloy exhibits a high strength and ductility, comparable to that of type 316L stainless steel. Its antiferromagnetic behaviour is not changed by cold deformation process. The alloy shows suitable degradation behaviour with a uniform corrosion mechanism and a slow release of ions that make it particularly well suited for the development of a new class of biodegradable stents.
107
Authors: Hamed Heidari, Houshang Alamdari, Dominique Dubé, Robert Schulz
Abstract: In this work, porous TiB2 ceramics were consolidated by pressureless sintering method using metallic Ti and Fe as additives in order to perform sintering at temperatures lower than 1700°C. It was shown that processing parameters including milling time of the starting mixture had a considerable effect on final properties of sintered specimens and their behavior in molten aluminum. Microstructural studies were carried out using optical microscope, SEM and EPMA. It was found that specimens with uniform and crack-free microstructure could be produced using the pre-mixed powders milled for as low as 30 min prior to compaction and sintering. Sessile drop test was performed on the specimens milled for 30 and 240 minutes. Their interaction with molten aluminum was also studied. It was found that 30 min milling time resulted in better electrical conductivity, wettability and stability in liquid aluminum.
655
Authors: Hamed Heidari, Houshang Alamdari, Dominique Dubé, Robert Schulz
Abstract: In this work, porous TiB2 ceramics were consolidated by pressureless sintering method using metallic Ti and Fe as additives in order to perform sintering at temperatures lower than 1700°C. It was shown that processing parameters including milling time of the starting mixture had a considerable effect on final properties of sintered specimens and their behavior in molten aluminum. Microstructural studies were carried out using optical microscope, SEM and EPMA. It was found that specimens with uniform and crack-free microstructure could be produced using the pre-mixed powders milled for as low as 30 min prior to compaction and sintering. Sessile drop test was performed on the specimens milled for 30 and 240 minutes. Their interaction with molten aluminum was also studied. It was found that 30 min milling time resulted in better electrical conductivity, wettability and stability in liquid aluminum.
195
Authors: Julie Lévesque, Dominique Dubé, Michel Fiset, D. Mantovani
521
Showing 1 to 7 of 7 Paper Titles