Papers by Author: Ednan Joanni

Paper TitlePage

Authors: Raluca Savu, Ednan Joanni
Abstract: Nanocrystalline indium tin oxide (ITO) thin films were deposited on Si/SiO2 substrates by laser ablation from a ceramic target with a composition of 0.9 In2O3 . 0.1 SnO2. Samples were prepared in the pressure range from 10-1 to 5mbar, either in-situ at 500°C or at room temperature and heat-treated in air at 500°C. X-ray diffraction results show that the films are not oriented, except the ones made at high temperature which exhibit strong (400) orientation. AFM pictures show that the grains are round shaped and the sizes are in the range between 50 and 200nm, except for films made in-situ at 10-1mbar which are elongated and faceted. For higher pressures the grains tend to be small and to form agglomerates. The porosity of the films increases with the deposition pressure and the thicknesses reach a maximum of 2.8µm at 1mbar for the films made at room temperature and of 1.2µm at 2mbar for the ones made in-situ; for higher pressures the growth rate drop drastically, as revealed from SEM observations of cross-sections. The electrical resistance increases with the deposition pressure due to the increase in porosity, changing from 3.3k to 38.9M for films deposited at room temperature and from 20 to 265k for the ones made in-situ.
1161
Authors: Simeon Agathopoulos, Rui N. Correia, Ednan Joanni, José R. A. Fernandes
487
Authors: José R. A. Fernandes, Ednan Joanni, Raluca Savu
Abstract: Thin films of PbZr0,52Ti0,48O3 (PZT) for applications in piezoelectric actuators were deposited by the pulsed laser deposition technique (PLD) over Pt/Ti/SiO2/Si substrates. The effect of different electrode and PZT deposition and processing conditions on the ferroelectric and piezoelectric properties of the devices was investigated. X-Ray diffraction results showed that the deposition temperature for the electrodes had a strong influence on the PZT orientation; the increase in the electrode deposition temperature changes the PZT orientation from random or (111) to (001) depending also on PZT deposition pressure. From scanning electron microscope (SEM) pictures one could also observe that the deposition pressure affects the porosity of the PZT films, which increases with the pressure above 1×10-1 mbar for films deposited at room temperature. The measurement of the ferroelectric hysteresis curves confirmed that the structural changes induced by different processing parameters affected the ferroelectric properties of the material. The best ferroelectric properties including fatigue endurance were obtained for electrodes made at high temperature and for PZT deposited at 2×10-2 mbar and heat treated at 675°C for 30 minutes in an oxygen atmosphere. The piezoelectric coefficient d33, measured using a Michelson interferometer, had values in the range between 20 and 60 pm/V, and showed a strong dependence on the thickness of the PZT films.
1353
Showing 1 to 3 of 3 Paper Titles