Papers by Author: F. Jorge Lino

Paper TitlePage

Authors: Pedro V. Vasconcelos, F. Jorge Lino, Rui J.L. Neto, Paula Henrique
635
Authors: Pedro V. Vasconcelos, F. Jorge Lino, Ferrie W.J. van Hattum, Rui J.L. Neto
742
Authors: Teresa P. Duarte, Rui J.L. Neto, Rui Félix, F. Jorge Lino
Abstract: Companies are continuously under pressure to innovate their products and processes. In Portugal, there are already several examples of enterprises that have chosen research groups, associated to universities, to straighten collaboration seeking the development of new materials and advanced technological processes, to produce components with complex shapes, high surface quality, and others, at low cost, for continuously more demanding applications. Unfortunately, these cases are still a very small number, and many efforts have to be done to enlarge the collaboration university-companies. Ti and other reactive alloys are important groups of metals that are under intense and continuous research and development. For example, the high mechanical properties, low density, osteointegration behavior, corrosion resistance to fluids and tissues of the human body, the ability to be sterilized, and the possibility to obtain complex shapes, makes Ti a very attractive material for medical applications. The investment casting process, using lost wax or lost rapid prototyping models, allows designers a great amount of freedom and capacity to quickly produce castings of high dimensional accuracy and excellent surface quality suitable for different applications. Many of the castings obtained by this process are immediately ready for use, avoiding costly machining operations and joining processes, making the process very attractive to produce precision parts in Ti and other reactive alloys. However, the high reactivity of the Ti raises several compatibility problems with the traditional materials employed on the ceramic shells for casting steels and non ferrous alloys. The fragile surface layer obtained on the interface Ti-ceramic shell, result of the Ti reaction with oxygen and nitrogen of the shell, significantly reduces the mechanical properties of the cast parts, making them useless. The aim of the present work is the study of the interface properties of the Ti-ceramic shell, in order to be able to manufacture ceramic shells of low chemical reactivity for the investment casting process of reactive alloys, namely; titanium alloys, inconel, aluminotitanates, and others. Ceramic shells manufactured with calcium and yttria stabilized zirconia and other non reactive ceramics were employed and the metallic interface characterized in terms of microscopic and microhardness properties.
157
Authors: H. Nogueira, D. Abílio, F. Jorge Lino
376
Authors: F. Jorge Lino, Rui J.L. Neto, Ricardo Paiva, Ana Moreira
835
Authors: F. Jorge Lino, Pedro V. Vasconcelos, Rui J.L. Neto, Ricardo Paiva
Abstract: Based on the annual sales volume, stereolitography (SLA) can be considered a Rapid Prototyping (RP) technology with a promising future. Besides being the pioneering equipment, when RP took the first steps in 1988, this technology has been developed with interesting and fast innovations, and a great activity in patents registration. One can assist to a strong research seeking the enlargement of the system capacity to produce large and micro-size parts, and simultaneously impose the technology as a mass production process that is evolving towards a true Rapid Manufacturing (RM) technology. SLA is an excellent tool to materialize concepts and ideas due to the high-resolution capacity, transparency and fine details of the models and prototypes that can be produced. In this study, the state of art of SLA is analyzed and the recent innovations are presented, and considering that the authors have a considerable experience in supervising design students, from different universities, some of the more emblematic projects that were developed at INEGI – Institute of Mechanical Engineering and Industrial Management, are presented. SLA and direct conversion processes were combined to produce new products in materials such as glass, ceramics and metals, for different industrial sectors.
998
Authors: Pedro V. Vasconcelos, F. Jorge Lino, Rui J.L. Neto
169
Showing 1 to 7 of 7 Paper Titles