Papers by Author: Feng Jiang

Paper TitlePage

Authors: L. Yan, Feng Jiang, Y.M. Rong
Abstract: This paper presented a finite element simulation model for the analysis of AISI D2 orthogonal cutting process using TiAlN coated inserts. Firstly, AISI D2 material constitutive model was built based on power law model, which was used in the FEM codes to describe the effect of strain, strain rate and temperature on the material flow stress. In modeling the chip formation, a damage model was employed to predict the chip separation. Then cutting edge radius and thickness of TiAlN coating of cutting tool were measured by SEM. Friction coefficients of cutting tool against AISI D2 steel were obtained by ball-on-plate friction tests on UMT-2 high speed tribometer. Finally, finite element simulations of AISI D2 orthogonal cutting processes were performed using AdvantedgeTM software. The simulated results of cutting forces and chip morphology showed good agreement with the experimental results, which validated the reliability of the cutting process simulation method.
Authors: Feng Jiang, Jian Feng Li, Jie Sun, Song Zhang, Lan Yan
Abstract: For the analysis of cooling effect, the cutting inserts were heated to 900°C and then exposed in the room-air and cold-air with different pressure respectively. The temperature variation were recorded by infra-red (IR) pyrometer. The temperature-dependent global heat transfer coefficients were estimated by the theoretical analysis and experimental data. The finite element analysis (FEA) was employed to simulate the cooling process and modify the estimated heat transfer coefficients. The heat transfer coefficients decreased from 55.1 W/m2•°C (800°C) to 9.32 W/m2•°C (350°C) in the natural cooling and approximately 300 W/m2•°C (600°C) to 60 W/m2•°C (300°C) in the cold-air cooling. Cold-air cooling greatly increased the heat transfer coefficients, but it seemed the air pressure had little pressure on the heat transfer coefficients.
Authors: Zhong Qiu Wang, Jian Feng Li, Jie Sun, Feng Jiang, Jun Zhou
Abstract: In the present study, two-dimensional orthogonal slot milling experiments in conjunction with an analytical-based computer code are used to determine flow stress data as a function of the high strains, strain rates and temperatures encountered in metal cutting. By using this method, the flow stress of Al7050-T7451 is modeled. Through the comparison of cutting forces between FEM and experiment, the FEM model using predicted flow stress can give precise cutting forces. The work of this paper provides a useful method for material constitutive equation modeling without doing large number of cutting experiment or expensive SHPB tests.
Authors: Lan Yan, Zhi Xiong Zhou, Feng Jiang, X.K. Li, Yi Ming Rong
Abstract: Grinding process can be considered as micro-cutting processes with the irregular abrasive grains on the surface of grinding wheel. The grain-workpiece interface directly forms the workpiece surface. Therefore, the study of the grain-workpiece interaction through micro-cutting analysis becomes necessary. But the experiments for single grain cutting are difficult to perform. Aimed at this problem, single grain cutting simulations of AISI D2 steel with a wide range of cutting parameters have been carried out with AdvantEdgeTM in this study. The effect of cutting parameters on cutting force, specific cutting force, material removal rate and critical depth of cut has been analyzed.
Authors: Feng Jiang, L. Yan, Y.M. Rong, Y.P. Liu
Abstract: In this study, mechanical model of plowing process considering material flow process was built. Dynamic material model of workpiece (AISI D2) was included in this plowing model. The friction between diamond indenter against AISI D2 steel was obtained by the ball-on-plate test. The scratch tests with diamond indenter against AISI D2 steel were performed. The scratch morphology was investigated by white light interferometer. The scratch forces in the different loads were calculated by the mechanical model of plowing process. The calculated scratch forces showed good agreement with experimental results.
Authors: Feng Jiang, Jian Feng Li, Fang Yi Li
Abstract: Design for assembly (DFA) has proved its success in manufacturing to face the market challenge. But the assembly process parameters were rarely concerned in the design for assembly. Aimed at this problem, an algorithm for design for automated assembly of circular parts was proposed. This algorithm can help designer to select the optimal process parameters, such as dimension tolerance of mating parts, location precision of assembly device and so on, subject to budgetary constraints. Finally a case is employed to explain the optimal course.
Authors: Feng Jiang, Jian Feng Li, Jie Sun, Song Zhang, Lan Yan
Abstract: In this study, orthogonal arrays were applied in the design of the experiments and Ti6Al4V end-milling experiments were performed on the DAEWOO machining center. The white light interferometer was used to obtain the average surface roughness (Ra). A quadratic model was proposed to fit the experimental data of the surface roughness. And the fit model was used to optimize the cutting parameters in the given material removal rate. Finally the verification experiments showed good agreement with the estimated results.
Authors: Lan Yan, Xue Kun Li, Feng Jiang, Zhi Xiong Zhou, Yi Ming Rong
Abstract: The grinding process can be considered as micro-cutting processes with irregular abrasive grains on the surface of grinding wheel. Single grain cutting simulation of AISI D2 steel with a wide range of cutting parameters is carried out with AdvantEdgeTM. The effect of cutting parameters on cutting force, chip formation, material removal rate, and derived parameters such as the specific cutting force, critical depth of cut and shear angle is analyzed. The formation of chip, side burr and side flow is observed in the cutting zone. Material removal rate increases with the increase of depth of cut and cutting speed. Specific cutting force decreases with the increase of depth of cut resulting in size effect. The shear angle increases as the depth of cut and cutting speed increase. This factorial analysis of single grain cutting is adopted to facilitate the calculation of force consumption for each single abrasive grain in the grinding zone.
Authors: Feng Jiang, Jian Feng Li, Jie Sun, Song Zhang, Yong He
Abstract: Friction coefficient is an important index to evaluate the cooling and lubrication effects. In this study, the orthogonal milling experiments with different cooling/lubrication methods (dry, cutting fluid, MQL) were performed and the milling forces were measured to calculate the apparent friction coefficients with the mechanistic model. The effects of cutting parameters and cooling/lubrication methods on the apparent friction coefficients were analyzed.
Authors: Lan Yan, Zhi Xiong Zhou, Feng Jiang, Yi Ming Rong
Abstract: White light interferometer was employed to measure the surface topography of 60# and 120# alumina grinding wheel. The correlation of wheel topography and its performance was characterized through the three-dimensional (3D) surface characterization parameters of “Birmingham set”. Birmingham parameters were used to characterize the performances of grinding wheel, in items of grain density, grain shape and grain sharpness. The effects of sampling interval on the 3D surface parameters were analyzed and the optimal sampling interval was selected to calculate the 3D surface parameters.
Showing 1 to 10 of 13 Paper Titles