Papers by Author: Gianluca Buffa

Paper TitlePage

Authors: Gianluca Buffa, Livan Fratini, Fabrizio Micari
Abstract: Friction Stir Welding (FSW) is an energy efficient and environmentally "friendly" welding process. The parts are welded together in a solid-state joining process at a temperature below the melting point of the workpiece material under a combination of extruding and forging. This technology has been successfully used to join materials that are difficult-to-weld or ‘unweldable’ by fusion welding methods. In the paper a neural network was set up and trained in order to predict the final grain size in the transverse section of a FSW butt joint of aluminum alloys. What is more, due to the relationship between the extension of the “material zones” and the joint resistance, the AI tool was able to furnish indications for the design of the welding process. Experimental tests and subsequent microstructure observations were developed in order to verify the numerical predictions.
413
Authors: Gianluca Buffa, Livan Fratini
Abstract: During the last years welded titanium components have been extensively applied in aeronautical and aerospace industries because of their high specific strength and corrosion resistance properties. Friction Stir Welding (FSW) is a solid state welding process, currently industrially utilized for difficult to be welded or “unweldable” aluminum and magnesium alloys, able to overcome the drawbacks of traditional fusion welding techniques. When titanium alloys are concerned, additional problems arise as the need for very high strength and high temperature resistant tools, gas shield protection and high stiffness machines. Additionally, the process is characterized by an elevated sensitivity to temperature variations, which, in turn, depends on the main operative parameters. Numerical simulation represents the optimal solution in order to perform an effective process optimization with affordable costs. In this paper, a fully 3D FEM model for the FSW process is proposed, that is thermo-mechanically coupled and with rigid-viscoplastic material behavior. Experimental clamping parts are modeled and the thermal loads are calculated at the varying of the cooling strategy. Finally, the effectiveness of the cooling systems is evaluated through experimental tests.
304
Authors: Gianluca Buffa, Livan Fratini, Fabrizio Micari, Giuseppe Previte
Abstract: Solid state bonding recurs in several manufacturing processes, as extrusion of hollow profiles and solid welding processes. Among the latter, Friction Stir Welding (FSW) is nowadays of particular industrial interest because of the specific advantages with respect to the classic welding technologies. Proper conditions of pressure, temperature, strain and strain rate are needed in order to get the final effective bonding. In the paper the authors compare different solid state bonding conditions obtained at the varying of the main process parameters in FSW of butt joints of AA5754 aluminum alloys. The experimental results are compared with the numerical ones from a FEM model previously developed by the authors, in order to investigate an effective bonding criterion to be implemented into the FSW numerical model.
89
Authors: Carlo Bruni, Gianluca Buffa, Livan Fratini, M. Simoncini
Abstract: Experimental and numerical investigations have been performed in order to study the effect of welding parameters on properties of FSW-ed AZ31 magnesium alloy sheets. The results, presented in terms of tensile strength and numerical field variables distributions, allow to understand the behaviour of such material when FSW-ed using different rotational and welding speeds for a given tool geometry.
3954
Authors: Gianluca Buffa, Livan Fratini, Marion Merklein, Detlev Staud
Abstract: Tight competition characterizing automotive industries in the last decades has determined a strong research effort aimed to improve utilized processes and materials in sheet stamping. As far as the latter are regarded light weight alloys, high strength steels and tailored blanks have been increasingly utilized with the aim to reduce parts weight and fuel consumptions. In the paper the mechanical properties and formability of tailored welded blanks made of a precipitation hardenable aluminum alloy but with different sheet thicknesses, have been investigated: both laser welding and friction stir welding have been developed to obtain the tailored blanks. For both welding operations a wide range of the thickness ratios has been considered. The formability of the obtained blanks has been characterized through tensile tests and cup deep drawing tests, in order to show the formability in dependency of the stress condition; what is more mechanical and metallurgical investigations have been made on the welded joints.
143
Authors: A. Barcellona, Gianluca Buffa, D. Contorno, Livan Fratini, D. Palmeri
Abstract: In the paper the results of a wide experimental activity on friction stir welding (FSW) of aluminum alloys are reported. In particular the butt joints of two different materials, namely AA1050-O and AA6082-T6 were considered. Grains dimensions and precipitates density were investigated both in the parent materials and after the welding processes. Furthermore post-welding heat treatments effects on the joint strength were studied.
591
Authors: Gianluca Buffa, Giuseppe Ingarao, Livan Fratini, Fabrizio Micari
Abstract: Single Point Incremental Forming (SPIF) is a quite new sheet forming process which offers the possibility to deform complex parts without dedicated dies using only a single point tool and a standard 3-axis CNC machine. The process mechanics enables strains much higher than traditional sheet forming processes, but particular attention must be given to the final part geometrical accuracy. In this paper the capabilities of a dedicated explicit numerical model are quantitatively analyzed on pyramid-shaped parts. In particular a comparison between experimental and numerical results is reported. Three different shapes at the varying of the stamping angle were considered and the final shape was acquired, through a white light triangulation based optical scanner, after the removing of the punch and of the clamping fixture. LS-DYNA commercial code was used to simulate the three different case studies, and an explicit loading-implicit unloading approach was implemented in order to simulate also the shape distortions due to springback phenomenon. The effect of several numerical parameters on the final shape and the thickness distribution were investigated. In particular numerical results were analyzed at the varying of the material constituve law, of the shell element type and of the number of integration points along the thickness.
913
Authors: Carlo Bruni, Gianluca Buffa, L. d’Apolito, Archimede Forcellese, Livan Fratini
Abstract: Friction Stir Welding (FSW) has been arousing a continuously increasing interest among joining processes since its invention in 1991. Although mainly used for aluminum alloys, it can also be applied to other light alloys. In the present work, experimental and numerical campaigns have been performed with the aim to study the effect of the tool geometry on the mechanical properties of FSW-ed AZ31 magnesium alloy sheets. The results, presented in terms of tensile strength, ductility, micro-hardness values and numerical field variables distributions, allow to reach a deeper knowledge on the behaviour of such relatively new material when FSW-ed, and can be used for a full optimization of the joints.
555
Authors: Gianluca Buffa, Livan Fratini, Mario Piacentini
Abstract: In the paper, a variation of the Friction Stir Spot Welding (FSSW) process has been considered. In particular, a particular tool path is given after the sinking phase nearby the initial penetration site. The process mechanics was highlighted and the joint strength was considered at the varying of the most relevant process parameters. Furthermore macro and micro analyses were developed in order to highlight the process mechanics and the local material microstructure evolution. The investigated technology appears a promising joining technique in order to develop effective spot joints.
767
Authors: Gianluca Buffa, Livan Fratini
Abstract: Spot welding can be considered a very common joining technique in automotive and transportation industries as it permits to obtain effective lap-joints with short process times and what is more it is easily developed through robots and automated systems. Recently the Friction Stir Spot Welding (FSSW) process has been proposed as a natural evolution of the already known Friction Stir Welding (FSW) process, allowing to obtain sound spot joints that do not suffer from the insurgence of typical welding defects due to the fusion of the base material. In the paper, a modified Friction Stir Spot Welding (FSSW) process, with a spiral circular movement given to the tool after the sinking stage, is proposed. A continuum based numerical model for Friction Stir Spot Welding process is developed, that is 2D Lagrangian implicit, coupled, rigid-viscoplastic. This model is used to investigate the distribution of the main field variables, namely temperature, strain and strain rate, as well as the Zener-Hollomon parameter which, in turn, strongly affects the Continuous Dynamic Recrystallization (CDRX) process that takes place in the weld nugget. Numerical and experimental results are presented showing the effects of the process parameters on the joint performances and the mechanical effectiveness of the modified process.
1220
Showing 1 to 10 of 10 Paper Titles