Papers by Author: Hiroshi Ohkawara

Paper TitlePage

Authors: Akira Shimamoto, Hiroshi Ohkawara, Jeong Hwan Nam, Jai Sug Hawong
Abstract: In this study, the photoelastic experiment hybrid method was introduced and applied to the fracture problems of the isotropic polycarbonate plate with a central crack under the uniaxial and equibiaxial tensile load. The influences of equibiaxial tensile load on the isochromatic fringes and stress fields, stress intensity factors near the mixed mode crack-tip were investigated. As the results, without relation to the inclined angle of crack, the asymmetric isochromatic fringes around the crack propagation line under uniaxial tensile load has become symmetric and the slope of isochromatic fringe loop has inclined toward crack surface when an equal lateral tensile load was added. Furthermore, the distribution of all stress components have changed from asymmetric shape to symmetric shape, and only the range of compressive stress of σχ/σ0 have changed as compared with the mode I condition under unaxial load with β = 0°. When an equal lateral tensile load was added to uniaxial load, the value of stress intensity factors are little changed when β = 0° but the values of KI /K0 are increased and KII /K0 are become zero, that is, mode I situation when β = 15°~45°.
837
Authors: Akira Shimamoto, Hiroshi Ohkawara, Hong Yang Zhao
Abstract: Stress intensity factor K is analyzed by measuring distribution of sum of the principal stresses around slit tip by an infrared stress measuring device. Under the biaxial tensile stress, both K-values of the isotropic materials with slit angle 0° and 45° show there is no influence of the slit angle at Mode I. The tolerance of the measured K-values of the test specimens which are compared with measured K-values by photoelastic method are around 10-20and these increase as applied cyclic load increases. These tolerance can be reduced up to about 8% by modifying measurements. The effectiveness of the thermoelastic stress measurement method to KI value analyzing under biaxial tensile stress was confirmed.
1103
Authors: Akira Shimamoto, Hiroshi Ohkawara, Jeong Hwan Nam
Abstract: In this study, stress intensity factors were investigated and determined by photoelastic and caustics methods to clarify the mechanical behavior of crack tips under various biaxiality ratios. Polycarbonate (PC) plates with isotropic and anisotropic properties were used as specimens. The results confirmed that regardless of biaxiality ratio or the material’s property only ‘KI’ was generated in cases of a crack angle θ = 0º. It was also confirmed that only KI was generated in the isotropic PC plate with crack angle θ = 45º under a biaxial load (1:1). When the biaxiality ratio is more than 1:1 with a crack angle θ = 45º, both KI and KII are simultaneously generated in the isotropic specimen. Furthermore, KI, and KII values are influenced most by the extrusion direction in the anisotropic specimens as the biaxiality load ratios increase.
193
Authors: Akira Shimamoto, Hiroshi Ohkawara, Sung Mo Yang
Abstract: Today, stress measurement methods by thermography and by photoelasticity are widely used to make stress distribution visible. However, it is difficult to separate principal stresses using only one of these methods because only the difference of principal stresses is measured in photoelasticity, and only the sum of the principal stresses is measured in thermograpy. Therefore, the inverse analysis problem must be solved to separate the principal stress in the thermoelastic method and the shear difference integration method must be used for the photoelastic method. Although there are some reports separation of the principal stresses under uniaxial stress by combining the two methods, little research under the biaxial stress has been reported due to the difficulty of experimentation. In this research, the principal stresses under biaxial stress are separated by a combined method. Moreover, it is verified that the thermoelastic stress measurement method is effective to evaluate the stress concentration factor.
1214
Showing 1 to 4 of 4 Paper Titles