Papers by Author: Hossein Beladi

Paper TitlePage

Authors: A. Shokouhi, Hossein Beladi, Peter D. Hodgson
1295
Authors: Ilana Timokhina, Hossein Beladi, Xiang Yuan Xiong, Yoshitaka Adachi, Peter D. Hodgson
Abstract: A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 350°C bainitic transformation temperature for 1 day to form fully bainitic structure with nano-layers of bainitic ferrite and retained austenite, while a 0.26C-1.96Si-2Mn-0.31Mo (wt%) steel was subjected to a successive isothermal heat treatment at 700°C for 300 min followed by 350°C for 120 min to form a hybrid microstructure consisting of ductile ferrite and fine scale bainite. The dislocation density and morphology of bainitic ferrite, and retained austenite characteristics such as size, and volume fraction were studied using Transmission Electron Microscopy. It was found that bainitic ferrite has high dislocation density for both steels. The retained austenite characteristics and bainite morphology were affected by composition of steels. Atom Probe Tomography (APT) has the high spatial resolution required for accurate determination of the carbon content of the bainitic ferrite and retained austenite, the solute distribution between these phases and calculation of the local composition of fine clusters and particles that allows to provide detailed insight into the bainite transformation of the steels. The carbon content of bainitic ferrite in both steels was found to be higher compared to the para-equilibrium level of carbon in ferrite. APT also revealed the presence of fine C-rich clusters and Fe-C carbides in bainitic ferrite of both steels.
1249
Authors: Peter Hodgson, Subrata Mukherjee, Hossein Beladi, Xiang Yuan Xiong, Ilana B. Timokhina
Abstract: Two steels, ferritic, high strength with interphase precipitation and nanobainitic, were used to show the advances in and application of atom probe. The coexistence of the nanoscale, interphase Nb-Mo-C clusters and stoichiometric MC nanoparticles was found in the high strength steel after thermomechanical processing. Moreover, the segregation of carbon at different heterogeneous sites such as grain boundary that reduces the solute element available for fine precipitation was observed. The APT study of the solutes redistribution between the retained austenite and bainitic ferrite in the nanobainitic steel revealed: (i) the presence of two types of the retained austenite with higher and lower carbon content and (ii) segregation of carbon at the local defects such as dislocations in the bainitic ferrite during the isothermal hold.
14
Authors: Jin Kyung Kim, Yuri Estrin, Hossein Beladi, Sung Kyu Kim, Kwang Geun Chin, Bruno C. De Cooman
Abstract: High Mn steels demonstrate an exceptional combination of high strength and ductility due to their high work hardening rate during deformation. The microstructure evolution and work hardening behavior of Fe18Mn0.6C1.5Al TWIP steel in uni-axial tension were examined. The purpose of this study was to determine the contribution of all the relevant deformation mechanism : slip, twinning and dynamic strain aging. Constitutive modeling was carried out based on the Kubin-Estrin model, in which the densities of mobile and forest dislocations are coupled in order to account for the continuous immobilization of mobile dislocations during straining. These coupled dislocation densities were also used for simulating the contribution of dynamic strain aging on the flow stress. The model was modified to include the effect of twinning.
270
Authors: Qi Chao, Hossein Beladi, Ilchat Sabirov, Peter Hodgson
Abstract: The flow curve behavior and microstructure evolution of commercially pure titanium (CP-Ti) through uniaxial hot compression was investigated at 850 °C and a strain rate of 0.1/s. Electron back scattered diffraction (EBSD) was employed to characterize the microstructure and crystallographic texture development for different thermomechanical conditions. The stress-strain curves of CP-Ti alloy under hot compression displayed a typical flow behavior of metals undergoing dynamic recrystallization (DRX), which resulted in grain refinement. The critical strain for the onset of DRX was 0.13 using the double differentiation analysis technique. It was also revealed that the texture was markably altered during hot deformation.
281
Authors: Ilana B. Timokhina, Hossein Beladi, Xiang Yuan Xiong, Peter D. Hodgson
Abstract: The influence of pre-straining and bake-hardening on the mechanical properties of thermomechanically processed 0.2C-1.5Si-1.5Mn-0.2Mo-0.004Nb (wt%) steel was analysed using tensile test, transmission electron microscopy (TEM) and atom probe tomography (APT). This steel after processing had high strength (~1200MPa) and good ductility (~20%) due to the formation of fully bainitic microstructure with nanolayers of bainitic ferrite and retained austenite. The bake hardening (BH) of pre-strained (PS) samples increased the yield strength of steel up to 690MPa and showed the bake-hardening response of 220MPa due to the operation of several strengthening mechanisms such as transformation induced plasticity during pre-straining and pinning the dislocations by carbon during bake-hardening treatment. The carbon content of the bainitic ferrite and retained austenite before and after bake-hardening treatment, the solute distribution between these phases and the local composition of fine Fe-C clusters and particles formed during bake-hardening treatment was calculated using APT. The bainitic ferrite and retained austenite microstructural characteristics such as thickness of the layers and their dislocation density before and after bake-hardening treatment were studied using TEM.
2332
Authors: Hossein Beladi, Pavel Cizek, Adam S. Taylor, Peter D. Hodgson
Abstract: Two distinct substructures were produced in a Ni-30Fe austenitic model alloy by different thermomechanical processing routes. The first substructure largely displayed organized, banded subgrain arrangements with alternating misorientations, resulting from the deformation at a strain just before the initiation of dynamic recrystallization (DRX). By contrast, the second substructure was more random in character and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, formed through DRX. During the post-deformation annealing, the latter substructure revealed a rapid disintegration of dislocation boundaries leading to the formation of dislocation-free grains within a short holding time, though the former largely preserved its characteristics till becoming replaced by growing statically recrystallized grains.
76
Authors: Vadim Shterner, Ilana Timokhina, Hossein Beladi, Peter D. Hodgson
Abstract: The aim of the present study was to investigate the role of deformation temperature on the active deformation mechanisms in a 0.6C-18Mn-1.5Al (wt%) TWIP steel. The tensile testing was performed at different temperatures, ranging from ambient to 400°C at a constant strain rate of 10-3 s-1. The microstructure characterization was carried out using a scanning electron microscopy. The deformation temperature revealed a significant effect on the active deformation mechanisms (i.e. slip versus twinning), resulting in different microstructure evolution and mechanical properties. At the room temperature, the mechanical twinning was the dominant deformation mechanism, enhancing both the strength and ductility. Dynamic strain aging (DSA) effect was observed at different deformation temperatures, though it was more pronounced at higher temperatures. The volume fraction of deformation twins significantly reduced with an increase in the deformation temperature, deteriorating the mechanical behavior. There was a transition temperature (~300°C), above which the mechanical twinning was hardly observed in the microstructure even at fracture, resulting in low ductility and strength. The current observation can be explained through the change in the stacking fault energy with the deformation temperature.
257
Authors: Elena V. Pereloma, Lai Chang Zhang, Klaus Dieter Liss, Ulf Garbe, Jonathan Almer, Thomas Schambron, Hossein Beladi, Ilana B. Timokhina
Abstract: In this work we compare and contrast the stability of retained austenite during tensile testing of Nb-Mo-Al transformation-induced plasticity steel subjected to different thermomechanical processing schedules. The obtained microstructures were characterised using optical metallography, transmission electron microscopy and X-ray diffraction. The transformation of retained austenite to martensite under tensile loading was observed by in-situ high energy X-ray diffraction at 1ID / APS. It has been shown that the variations in the microstructure of the steel, such as volume fractions of present phases, their morphology and dimensions, play a critical role in the strain-induced transition of retained austenite to martensite.
741
Authors: Peter D. Hodgson, Hossein Beladi, Matthew R. Barnett
Abstract: The development of ultrafine grained microstructures in steels has received considerable attention in recent times. In many cases the aim is to produce high strength structural steels with minimal alloying. It is well established that for an equiaxed ferrite with a uniform dispersion of second phase, both the strength and toughness will be markedly improved if the grain size can be reduced to 1-2 µm, from the typical range of 5-10 µm. Means of achieving this through dynamic strain induced transformation are examined here, following a brief overview of some of the key issues encountered when attempting to refine the austenite in existing mill configurations. A number of deformation microstructure maps are developed to aid the discussion.
39
Showing 1 to 10 of 26 Paper Titles