Papers by Author: Jim Richmond

Paper TitlePage

Authors: Sumi Krishnaswami, Anant K. Agarwal, Craig Capell, Jim Richmond, Sei Hyung Ryu, John W. Palmour, S. Balachandran, T. Paul Chow, Stephen Baynes, Bruce Geil, Kenneth A. Jones, Charles Scozzie
Abstract: 1000 V Bipolar Junction Transistor and integrated Darlington pairs with high current gain have been developed in 4H-SiC. The 3.38 mm x 3.38 mm BJT devices with an active area of 3 mm x 3 mm showed a forward on-current of 30 A, which corresponds to a current density of 333 A/cm2, at a forward voltage drop of 2 V. A common-emitter current gain of 40 was measured on these devices. A specific on-resistance of 6.0 mW-cm2 was observed at room temperature. The onresistance increases at higher temperatures, while the current gain decreases to 30 at 275°C. In addition, an integrated Darlington pair with an active area of 3 mm x 3 mm showed a collector current of 30 A at a forward drop of 4 V at room temperature. A current gain of 2400 was measured on these devices. A BVCEO of 1000 V was measured on both of these devices.
901
Authors: Sei Hyung Ryu, Craig Capell, Charlotte Jonas, Michael J. O'Loughlin, Lin Cheng, Khiem Lam, Al Burk, Jim Richmond, Jack Clayton, Allen Hefner, David Grider, Anant Agarwal, John Palmour
Abstract: The latest developments in ultra high voltage 4H-SiC IGBTs are presented. A 4H-SiC P-IGBT, with a chip size of 8.4 mm x 8.4 mm and an active area of 0.32 cm2, which is double the active area of the previously reported devices [1], exhibited a blocking voltage of 15 kV, while showing a room temperature differential specific on-resistance of 41 mΩ-cm2 with a gate bias of -20 V. A 4H-SiC N-IGBT with the same area showed a blocking voltage of 17 kV, and demonstrated a room temperature differential specific on-resistance of 25.6 mΩ-cm2 with a gate bias of 20 V. Field-Stop buffer layer design was used to control the charge injection from the backside. A comparison between N- and P- IGBTs, and the effects of different buffer designs, are presented.
954
Authors: Lin Cheng, Anant K. Agarwal, Craig Capell, Michael J. O'Loughlin, Khiem Lam, Jon Zhang, Jim Richmond, Al Burk, John W. Palmour, Aderinto Ogunniyi, Heather O’Brien, Charles Scozzie
Abstract: In this paper, we report our recently developed 1 cm2, 15 kV SiC p-GTO with an extremely low differential on-resistance (RON,diff) of 4.08 mΩ•cm2 at a high injection-current density (JAK) of 600 ~ 710 A/cm2. The 15 kV SiC p-GTO was built on a 120 μm, 2×1014/cm3 doped p-type SiC drift layer with a device active area of 0.521 cm2. Forward conduction of the 15 kV SiC p-GTO was characterized at 20°C and 200°C. Over this temperature range, the RON,diff at JAK of 600 ~ 710 A/cm2 decreased from 4.08 mΩ•cm2 at 20°C to 3.45 mΩ•cm2 at JAK of 600 ~ 680 A/cm2 at 200°C. The gate to cathode blocking voltage (VGK) was measured using a customized high-voltage test set-up. The leakage current at a VGK of 15 kV were measured 0.25 µA and 0.41 µA at 20°C and 200°C respectively.
978
Authors: Lin Cheng, Anant K. Agarwal, Michael J. O'Loughlin, Craig Capell, Khiem Lam, Charlotte Jonas, Jim Richmond, Al Burk, John W. Palmour, Aderinto Ogunniyi, Heather O’Brien, Charles Scozzie
Abstract: In this work, we report our recently developed 16 kV, 1 cm2, 4H-SiC PiN diode results. The SiC PiN diode was built on a 120 µm, 2×1014/cm3 doped n-type SiC drift layer with a device active area of 0.5175 cm2. Forward conduction of the PiN diode was characterized at temperatures from 20°C to 200°C. At high injection-current density (JF) of 350 ~ 400 A/cm2, the differential on-resistance (RON,diff) of the SiC PiN diode decreased from 6.08 mΩ·cm2 at 20°C to 5.12 mΩ·cm2 at 200°C, resulting in a very small average temperature coefficient of –5.33 µΩ·cm2/°C, while the forward voltage drop (VF) at 100 A/cm2 reduced from 4.77 V at 20°C to 4.17 V at 200°C. This is due to an increasing high-level carrier lifetime with an increase in temperature, resulting in reduced forward voltage drop. We also observed lower RON,diff at higher injection-current densities, suggesting that a higher carrier lifetime is needed in this lightly doped n-type SiC thick epi-layer in order to achieve full conductivity modulation. The anode to cathode reverse blocking leakage current was measured as 0.9 µA at 16 kV at room temperature.
895
Authors: Sei Hyung Ryu, Craig Capell, Charlotte Jonas, Michael J. O'Loughlin, Jack Clayton, Edward van Brunt, Khiem Lam, Jim Richmond, Arun Kadavelugu, Subhashish Bhattacharya, Albert A. Burk, Anant Agarwal, Dave Grider, Scott T. Allen, John W. Palmour
Abstract: A 1 cm x 1 cm 4H-SiC N-IGBT exhibited a blocking voltage of 20.7 kV with a leakage current of 140 μA, which represents the highest blocking voltage reported from a semiconductor power switching device to this date. The device used a 160 μm thick drift layer and a 1 μm thick Field-Stop buffer layer, and showed a VF of 6.4 V at an IC of 20 A, and a differential Ron,sp of 28 mΩ-cm2. Switching measurements with a supply voltage of 8 kV were performed, and a turn-off time of 1.1 μs and turn-off losses of 10.9 mJ were measured at 25°C, for a 8.4 mm x 8.4 mm device with 140 μm drift layer and 2 μm F-S buffer layer. The turn-off losses were reduced by approximately 50% by using a 5 μm F-S buffer layer. A 55 kW, 1.7 kV to 7 kV boost converter operating at 5 kHz was demonstrated using the 4H-SiC N-IGBT, and an efficiency value of 97.8% was reported.
1030
Authors: Edward van Brunt, Lin Cheng, Michael J. O'Loughlin, Jim Richmond, Vipindas Pala, John Palmour, Charles W. Tipton, Charles Scozzie
Abstract: In this work, we report our recently developed 27 kV, 20 A 4H-SiC n-IGBTs. Blocking voltages exceeding 24 kV were achieved by utilizing thick (210 μm and 230 μm), lightly doped N-drift layers with an appropriate edge termination. Prior to the device fabrication, an ambipolar carrier lifetime of greater than 10 μs was measured on both drift regions by the microwave photoconductivity decay (μPCD) technique. The SiC n-IGBTs exhibit an on-state voltage of 11.8 V at a forward current of 20 A and a gate bias of 20 V at 25 °C. The devices have a chip size of 0.81 cm2 and an active conducting area of 0.28 cm2. Double-pulse switching measurements carried out at up to 16 kV and 20 A demonstrate the robust operation of the device under hard-switched conditions; coupled thermal analysis indicates that the devices can operate at a forward current of up to 10 A in a hard-switched environment at a frequency of more than 3 kHz and a bus voltage of 14 kV.
847
Authors: Jim Richmond, Sei Hyung Ryu, Sumi Krishnaswami, Anant K. Agarwal, John W. Palmour, Bruce Geil, Dimos Katsis, Charles Scozzie
Abstract: This paper reports on a 400 watt boost converter using a SiC BJT and a SiC MOSFET as the switch and a 6 Amp and a 50 Amp SiC Schottky diode as the output rectifier. The converter was operated at 100 kHz with an input voltage of 200 volts DC and an output voltage of 400 volts DC. The efficiency was tested with an output loaded from 50 watts to 400 watts at baseplate temperatures of 25°C, 100°C, 150°C and 200°C. The results show the converter in all cases capable of operating at temperatures beyond the range possible with silicon power devices. While the converter efficiency was excellent in all cases, the SiC MOSFET and 6 Amp Schottky diode had the highest efficiency. Since the losses in a boost converter are dominated by the switching losses and the switching losses of the SiC devices are unaffected by temperature, the efficiency of the converter was effectively unchanged as a function of temperature.
1445
Authors: Sei Hyung Ryu, Sumi Krishnaswami, Mrinal K. Das, Jim Richmond, Anant K. Agarwal, John W. Palmour, James D. Scofield
Abstract: Due to the high critical field in 4H-SiC, the drain charge and switching loss densities in a SiC power device are approximately 10X higher than that of a silicon device. However, for the same voltage and resistance ratings, the device area is much smaller for the 4H-SiC device. Therefore, the total drain charge and switching losses are much lower for the 4H-SiC power device. A 2.3 kV, 13.5 mW-cm2 4H-SiC power DMOSFET with a device area of 2.1 mm x 2.1 mm has been demonstrated. The device showed a stable avalanche at a drain bias of 2.3 kV, and an on-current of 5 A with a VGS of 20 V and a VDS of 2.6 V. Approximately an order of magnitude lower parasitic capacitance values, as compared to those of commercially available silicon power MOSFETs, were measured for the 4H-SiC power DMOSFET. This suggests that the 4H-SiC DMOSFET can provide an order of magnitude improvement in switching performance in high speed switching applications.
797
Authors: Qing Chun Jon Zhang, Jim Richmond, Craig Capell, Anant K. Agarwal, John W. Palmour, Heather O'Brian, Charles Scozzie
Abstract: A novel power device configuration, the Bipolar Turn Off thyristor (BTO), was proposed and demonstrated in SiC. The BTO operates in anode switch configuration consisting of a 9 kV SiC p-type Gate Turn Off thyristor (GTO) and a 1600 V SiC n-type Bipolar Junction Transistor (BJT). Compared with SiC GTOs, several new features have been accomplished in the BTO: (1) A positive temperature coefficient of forward voltage drop, (2) Anode current saturation capability, and (3) A simple gate driver and fast switching speed.
1045
Authors: Mrinal K. Das, Q. Jon Zhang, Robert Callanan, Craig Capell, Jack Clayton, Matthew Donofrio, Sarah K. Haney, Fatima Husna, Charlotte Jonas, Jim Richmond, Joseph J. Sumakeris
Abstract: For the first time, high power 4H-SiC n-IGBTs have been demonstrated with 13 kV blocking and a low Rdiff,on of 22 mWcm2 which surpasses the 4H-SiC material limit for unipolar devices. Normally-off operation and >10 kV blocking is maintained up to 200oC base plate temperature. The on-state resistance has a slight positive temperature coefficient which makes the n-IGBT attractive for parallel configurations. MOS characterization reveals a low net positive fixed charge density in the oxide and a low interface trap density near the conduction band which produces a 3 V threshold and a peak channel mobility of 18 cm2/Vs in the lateral MOSFET test structure. Finally, encouraging device yields of 64% in the on-state and 27% in the blocking indicate that the 4H-SiC n-IGBT may eventually become a viable power device technology.
1183
Showing 1 to 10 of 31 Paper Titles