Papers by Author: Kaneaki Tsuzaki

Paper TitlePage

Authors: Fu Gao Wei, Kaneaki Tsuzaki, Toru Hara
Abstract: A new method has been developed to determine the activation energy for hydrogen desorption from steels by means of thermal desorption spectrometry (TDS). This method directly fits the Kissinger’s reaction kinetic formula dX/dt=A(1-X)exp(-Ed/RT) to experimentally measured thermal desorption spectrum and best fit yields the activation energy (Ed) and the value of constant A. It has been proven that this new method is applicable to precise measurement of the activation energy for hydrogen desorption from incoherent TiC particle, coherent TiC precipitate, grain boundary and dislocation in 0.05C-0.20Ti-2.0Ni and 0.42C-0.30Ti steels.
229
Authors: T. Sundararajan, Eiji Akiyama, Kaneaki Tsuzaki
Abstract: Crevice corrosion experiments on pure iron were carried out in a 0.5 M acetate buffer with varied chloride concentrations. Changes in resultant currents and morphology due to crevice attack were explained by IR potential drop mechanisms. The specimens experienced potential drop inside the crevice, which resulted in the formation of passive, active, and hydrogen evolution regions. The passive region did not exist in the electrolyte containing 0.05 M and 0.5 M chloride. Hydrogen evolution, which occurred inside the crevice was measured on rear side of the specimen using hydrogen permeation test. The results suggest that the hydrogen produced inside the crevice is measurable using a permeation test. The entry of diffusible hydrogen showed a significant increase with the addition of chloride into the acetate buffer.
97
Authors: Shusaku Takagi, Satoshi Terasaki, Kaneaki Tsuzaki, Tadanobu Inoue, Fumiyoshi Minami
Abstract: A new method for evaluating the hydrogen embrittlement (HE) susceptibility of ultra high strength steel was studied in order to propose a new method for assessing the delayed fracture property. The material used was 1400MPa tempered martensitic steel with the chemical composition 0.40C-0.24Si-0.81Mn-1.03Cr-0.16Mo(mass%). The local approach originally used for evaluating the brittle fracture property was applied to HE susceptibility assessment after modifying the method to include the effect of hydrogen content. Critical HE data used in the modified local approach was obtained by a stepwise test in which alternating processes of stress increase and stress holding were repeated until the specimen fractured. The specimen used in the stepwise test was 10 mm in diameter and the stress concentration factor was 4.9. Assessment of HE susceptibility for specimens with other dimensions entailed the use of a critical hydrogen content for failure, Hc, representing the maximum hydrogen content among the unfractured specimens in the HE test with constant loading. Matters to be noted for obtaining the material parameters are discussed.
2155
Authors: Zuo Gui Zhang, Eiji Akiyama, Yoshimi Watanabe, Yasuyuki Katada, Kaneaki Tsuzaki
Abstract: In this study, an Al-7 wt% Si-1.5 wt% Cu alloy was subjected to severe plastic deformation (SPD) by an equal-channel angular pressing (ECAP) technique. The ECAP process was repetitively carried out up to 8 passes using a strain introduction method of route BC, at a temperature of 25 °C and a pressing rate of 0.33 mm s-1. Microstructures of the samples before and after ECAP were observed by a scanning electron microscopy (SEM). Electrochemical properties of the Al-Si-Cu alloy fabricated by ECAP have been investigated in a borate-boric acid buffer solution containing Cl¯ ions at pH 8.3 and 25 °C by potentiodynamic polarization test. Corrosion pits on the sample surface after anodic polarization were investigated by means of SEM. The anodic polarization showed that as-cast Al-Si-Cu alloy with plate-shaped Si particles has poor resistance against pitting corrosion comparing to quenched sample without ECAP. Pitting potentials of ECAPed Al-Si-Cu alloy samples were higher than that of the sample without ECAP. In the Al-Si-Cu alloy, the corrosion pits were found in the region of Si particles and the size of pits formed on the ECAPed samples became smaller than that without ECAP. It is considered that the improvement of the pitting resistance of ECAPed Al-Si-Cu alloy is due to homogenous distribution of spherical Si particles generated during ECAP process.
2892
Authors: Valeriy Dudko, Rustam Kaibyshev, Andrey Belyakov, Yoshikazu Sakai, Kaneaki Tsuzaki
Abstract: The creep behavior of oxide-bearing Fe-0.6%O steel was studied in the temperature range of 550-700°C at stresses ranging from 100 to 400 MPa. The creep data showed high values of an apparent stress exponent n close to 16 for power-law creep. In addition the apparent experimental activation energy was much higher than that for the lattice diffusion in -iron. Analysis of creep data revealed that the deformation behavior was strongly affected by the threshold stresses, which are associated with the interaction between moving dislocations and fine incoherent oxide particles. Analysis of deformation behavior in terms of threshold stress leads the true stress exponent of 8; the activation energy for creep became close to value of activation energy for lattice diffusion at 700°C and for pipe-diffusion in the temperature range of 550–650°C.
3194
Authors: Kaneaki Tsuzaki, Andrey Belyakov, Yuuji Kimura
Abstract: Deformation microstructures were studied in a two-phase (about 60% ferrite and 40% austenite) Fe – 27%Cr – 9%Ni stainless steel. Severe plastic working was carried out by rolling from 21.3×21.3 mm2 to 7.8×7.8 mm2 square bar followed by swaging from Ø7.0 to 0.6 mm rod at an ambient temperature, providing a total strain of 6.9. After a rapid increase in the hardness at an early deformation, the rate of the strain hardening gradually decreased to almost zero at large strains above 4. In other words, the hardness approached a saturation level, leading to an apparent steadystate deformation behaviour during cold working. The severe deformation resulted in the evolution of highly elongated (sub)grains aligned along the rolling/swaging axis with the final transverse (sub)grain size of about 0.1 μm and the fraction of high-angle (sub)boundaries above 60%. However, the kinetics of microstructure evolution in the two phases was different. In the ferrite phase, the transverse size of deformation (sub)grains gradually decreased during the processing and approached 0.1 μm at strains of about 6.0, while the transverse size of the austenite (sub)grains rapidly reduced to its final value of 0.1 μm after a relatively low strain about 1.0.
305
Authors: Andrey Belyakov, Nadezhda Dudova, Marina Tikhonova, Taku Sakai, Kaneaki Tsuzaki, Rustam Kaibyshev
Abstract: Dynamic recrystallization (DRX) is one of the most important mechanisms for microstructure evolution during deformation of various metals and alloys. So-called discontinuous DRX usually develops in structural materials with low to medium stacking fault energy during hot working. The local migration, i.e. bulging, of grain boundaries leads to the formation of recrystallization nuclei, which then grow out consuming work-hardened surroundings. The cyclic character of nucleation and growth of new grains during deformation results in a dynamically constant average grain size. The dynamic grain size is sensitively dependent on temperature and strain rate and can be expressed by a power law function of flow stress with a grain size exponent of about-0.7 under conditions of hot working. Recent studies on DRX phenomenon suggest that a decrease in deformation temperature changes the structural mechanism for new grain formation. As a result, the grain size exponent in the relationship between the dynamic grain size and flow stress approaches about-0.25 under warm working conditions.
2704
Authors: Mao Qiu Wang, Eiji Akiyama, Kaneaki Tsuzaki
Abstract: We examine the hydrogen embrittlement susceptibility of a high-strength AISI 4135 steel by means of a slow strain-rate test (SSRT) using notched round bar specimens. Hydrogen was introduced into the specimens by electrochemical charging and its content was measured by thermal desorption spectrometry (TDS). It was found that the maximum tensile stress decreased in a power law manner with increasing diffusible hydrogen content. Finite element method (FEM) calculations demonstrated that the peak value of the maximum principal stress and the peak value of the locally accumulated hydrogen concentration at the maximum tensile stress were in good agreement with one power law relationship for the specimens with different stress concentration factors.
55
Showing 1 to 10 of 36 Paper Titles