Papers by Author: Ki Tae Kim

Paper TitlePage

Authors: Je Sik Shin, Se Hyun Ko, Ki Tae Kim
Abstract: In this paper, it was aimed to develop a new Al-Zn-Mg base aluminum alloy having high electrical conductivity, strength, and formability simultaneously. As a result, Al-Zn-Mg base low aluminum alloy sheet can be effectively strengthened without significant thermal conductivity loss by multiply alloying precipitation hardening elements and properly controlling production process parameters.
169
Authors: Jeong Min Kim, Gun Ha Lee, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract: Mg-8%Al-1%Ca was selected as a base alloy composition and small amounts of minor alloying elements, RE or Sr, were added. Microstructure of as-cast Mg-8%Al-1%Ca base alloys consists of dendritic primary Mg, Mg-Al-Ca and Mg17Al12 phases. Mg-Al-RE-(Ca) phase in the RE-added alloys and Mg-Al-Sr-(Ca) phase in the Sr-added alloys were additionally found. The creep resistance of Mg-8%Al based alloy was significantly improved by the minor alloying elements additions with 1%Ca. Comparatively globular primary phase could be obtained after just 30min. through an isothermal heating of as-cast Mg-Al-Ca alloys.
68
Authors: Jeong Min Kim, Bong Koo Park, Kee Sam Shin, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract: Effort has been devoted to develop new heat resistant diecasting alloys based on Mg-Al- Zn system in this research. Small amounts of cerium-rich misch metal and antimony additions to AZ91 alloy could enhance the tensile strength at an elevated temperature while keeping the good castability. The increase of Zn content in Mg-8(wt%)Al-xZn-0.5RE-0.5Sb alloys, was observed to significantly increase the yield strength at 175oC although the castability such as fluidity and hot cracking resistance was slightly decreased. Intensive microstructural investigation on the new Mg- Al-Zn diecasting alloys was also carried out.
525
Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract: Various amounts of Ca were added to AZ91D magnesium alloy, and their effects on the die-casting abilities were investigated. It was observed that fluidity as die filling ability tends to decrease by Ca additions except for about 2%Ca. This reduction of fluidity by Ca was more significant at high superheats probably due to the high affinity between Ca and oxygen. Contrary to expectation, hot cracking resistance was found to increase by Ca additions. High Ca alloys showed some die-sticking tendency. However, the tendency was not observed below 2%Ca.
424
Authors: Joong Hwan Jun, Young Kook Lee, Jeong Min Kim, Ki Tae Kim, Woon Jae Jung
Abstract: We reports the damping properties of an Fe-23%Mn alloy with various amounts of thermal or deformation-induced ε martensite. By controlling cooling temperatures and cold rolling degrees, the volume fractions of thermal and deformation-induced ε martensites are changed from 33 to 50% and from 33 to 75%, respectively. The damping capacity of the Fe-23%Mn alloy increases with an increase in thermal ε martensite content, whereas the damping capacity associated with deformation-induced ε martensite shows a peak value at 57% of ε martensite. Transmission electron micrographs on deformed samples reveal that the decay of damping over 57% of deformation-induced ε martensite is caused by an introduction of perfect dislocations, which play a role in suppressing the movement of damping sources. For the same amount of ε martensite, deformation-induced ε martensite exhibits higher level of damping capacity than thermal ε martensite. This may well be owing to relatively greater length of γ/ε interfaces in response to higher number density of ε martensite plates.
79
Authors: Seung Jin Lee, Joon Sik Park, Ki Tae Kim, Jeong Min Kim
Abstract: High strength high conductivity Cu-1%Cr-Mg-P alloy was selected as a base composition and Ag was added to the alloy in order to further increase the strength without sacrificing the conductivity. SEM and TEM analyses indicated that very fine MgP and Ag(Mg) precipitates were formed in addition to relatively large Cr phase in the Cu matrix. Significantly high strength could be obtained through the special cold rolling at an extremely low temperature using liquid nitrogen. The electrical conductivity of alloy was slightly decreased by the Ag addition, but the tensile strength could be further enhanced by it.
389
Authors: Seung Jin Lee, Joon Sik Park, Jeong Min Kim, Ki Tae Kim
Abstract: Small amount of Ag was added to high conductivity Cu-5%Cr alloy in order to increase the strength without sacrificing the conductivity. The typical microstructure of thermo-mechanically processed specimen mainly consists of Cu matrix and relatively large Cr phase. Although this typical microstructure was not changed with varied process variables, both the micro-hardness and conductivity were significantly affected by them. The electrical conductivity of alloy was slightly decreased by the Ag addition, but the micro-hardness could be enhanced by it. TEM analyses indicated that very fine Cr precipitates were formed in addition to the relatively large Cr phase in the Cu matrix. It is suggested that the properties of Cu-5Cr-xAg alloys can be optimized by carefully controlling the precipitation of the fine precipitates.
1694
Authors: Joong Hwan Jun, Geon Ha Lee, Jeong Min Kim, Ki Tae Kim, Woon Jae Jung
Abstract: Changes in microstructure and damping capacity with aging time for solutionized AZ91 (Mg-9%Al-1%Zn-0.2%Mn) alloy have been investigated based on experimental results from optical micrography, X-ray diffractometry, hardness test and damping capacity measurement vibrating in a flexural mode. Discontinuous β (Mg17Al12) precipitates form along the primary grain boundaries, the amount of which increases as the aging time increases. The hardness of α matrix with respect to aging shows a typical “S” shape, indicating a generation of fine continuous precipitation in the matrix during aging. The peak level of damping capacity for the AZ91 alloy is obtained after 1 hour of aging, over which the damping capacity becomes deteriorated continuously. The optimum density of continuous β precipitates with fine morphology, which may well act as pinning points for dislocation lines, might be responsible for the improvement of damping capacity.
235
Authors: Ki Tae Kim, Jeong Min Kim, Ki Dug Sung, Joong Hwan Jun, Woon Jae Jung
Abstract: Small amounts of various alloying elements were added to a high strength Al-Zn-Mg-Cu alloy and their effects on the microstructure, mechanical properties, and casting characteristics were investigated. Silicon additions with or without extra Mg to the Al-Zn-Mg-Cu alloy could enhance the castability such as fluidity, feedability, and hot tearing resistance significantly while maintaining a high strength. However, in these alloys containing silicon the compositional adjustment was necessary to prevent the Mg2Si phase formation from degrading the precipitation of MgZn2 phase that is responsible for the high strength. Zr addition to the base alloy was also observed to improve the feedability without deteriorating the tensile strength.
2539
Authors: Joong Hwan Jun, Geon Ha Lee, Jeong Min Kim, Ki Tae Kim, Woon Jae Jung
Abstract: Microstructures, tensile properties, and damping capacity of the hot-rolled and annealed K1A (Mg-0.7%Zr) wrought alloy were investigated in comparison with those of a commercial AZ31 (Mg-3%Al-1%Zn-0.2%Mn) wrought alloy. The K1A alloy in hot-rolled state shows 116 and 183MPa of tensile yield strength (σYS) and ultimate tensile strength (σUTS), respectively, which are significantly higher than those (40 and 130MPa) of the K1A casting alloy. The hot-rolled K1A alloy exhibits 10.4% of specific damping index (SDI) and subsequent annealing treatment remarkably enhances its SDI up to 19.7% without sacrificing the tensile strength. Although the annealed AZ31 alloy has 3.9% of low SDI, its tensile properties are still higher than those of the K1A alloy.
210
Showing 1 to 10 of 33 Paper Titles