Papers by Author: Kyung Seok Oh

Paper TitlePage

Authors: Kyung Seok Oh, S.I. Heo, J.C. Yun, Kyung Seop Han
Abstract: Conductive polymer composites (CPCs) consisting of expanded graphite (EG), flake-type graphite (FG) and thermalsetting resin were fabricated by means of a preform molding technique. Conductive fillers, EG and FG, were mechanically mixed with the phenol resin to provide an electrical property to composites. The filler loadings were fixed at 75wt.% to obtain a high electrical conductivity. The mechanical and electrical properties of CPCs were optimized according to the weight ratio and the particle size of FG. As the weight ratio increased, the flexural strength increased, however, the electrical conductivity decreased for both cases of CPCs using different sizes of FG. The particle size was an important parameter to change the mechanical and electrical behaviors. The flexural strength was sensitive to the particle size due to the different level of densification. The electrical conductivity also showed size-dependent behavior because of the different contribution to the conductive networking.
515
Authors: Kyung Seok Oh, Kwang Hwan Oh, Jun Ho Jang, Kyung Seop Han
Abstract: Universal test method to evaluate sheet metal formability was developed using finite element method based on axiomatic design. The newly developed formability test intended to generate the various modes of deformation and to control the onset of failure independently under each mode of deformation. The functional requirements (FRs) and the design parameters (DPs) of the test system were defined on axiomatic design approach and decomposed until the design reaches final stage. The independence axiom was applied throughout the design process to maintain the hierarchical independence of the formability test system. The flow diagram representing the system architecture was introduced after decomposition to give a help to establish the systematic design procedures and to determine the design parameters. Numerical simulation was carried out to determine the specific value of DPs which satisfies the FRs. Numerical results showed that modes of deformation varies accompanying various strain paths and good controllability of sheet forming is obtained for different kinds of materials. Experimental work was finally conducted to validate the proposed design. Stamping results represented that the outcome of the deformed geometry and strains are in good agreement with the numerical results.
961
Showing 1 to 2 of 2 Paper Titles