Papers by Author: M.A. Cherif

Paper TitlePage

Authors: Yuji Sano, T. Adachi, Koichi Akita, I. Altenberger, M.A. Cherif, Berthold Scholtes, Kiyotaka Masaki, Yasuo Ochi, Tatsuo Inoue
Abstract: Laser peening without protective coating (LPwC) has been applied to metallic materials using low energy pulses of a Q-switched and frequency-doubled Nd:YAG laser. Compressive residual stresses of several hundred megapascals were imparted on the surface of the materials. Redistribution of the residual stress in the top surface due to thermal loading was evaluated non-destructively by synchrotron radiation of SPring-8. Accelerating stress corrosion cracking (SCC) tests showed that LPwC prohibited SCC of sensitized materials. LPwC largely prolonged the fatigue lives of titanium alloys, aluminum alloys and austenitic stainless steels.
1589
Authors: I. Altenberger, Yuji Sano, M.A. Cherif, Ivan Nikitin, Berthold Scholtes
Abstract: Laser shock peening is a very effective mechanical surface treatment to enhance the fatigue behaviour of highly stressed components. In this work the effect of different laser shock peening conditions on the residual stress depth profile and fatigue behaviour without any sacrificial coating layer is investigated for two high strength titanium alloys, Ti-6Al-4V and Timetal LCB. The results show that the optimization of peening conditions is crucial to obtain excellent fatigue properties. Especially, power density, spot size and coverage severely influence the residual stress profile of laser shock peened Ti-6Al-4V and Timetal LCB specimens. For both alloys, subsurface as well as surface compressive residual stress peaks can be obtained by varying the peening conditions. In general, Timetal LCB exhibits steeper stress gradients than Ti-6Al-4V for identical peening conditions. The main parameters affecting the fatigue life are near-surface cold work and compressive residual stresses.
129
Showing 1 to 2 of 2 Paper Titles