Papers by Author: Mark A. Fanton

Paper TitlePage

Authors: N.Y. Garces, E.R. Glaser, W.E. Carlos, Mark A. Fanton
Abstract: We have recently explored the nature and stability of native defects in high-purity semi-insulating 4H-SiC bulk substrates grown by PVT and HTCVD methods after post-growth anneal treatments up to 2400oC using electron paramagnetic resonance (EPR) and low-temperature photoluminescence (PL) experiments. In the present study we have extended these investigations to SI 4H-SiC subjected to the same post-growth high-temperature anneal treatments, where significantly enhanced carrier lifetimes have been reported for such conditions, but cooled at different rates ranging from ~2-25oC/min. Previously, the intensities of the native defects decreased monotonically with anneals from 1200–1800oC; however, it was recently observed that several of these defects reappear after annealing at 2100oC and above. Our results illustrate the effects of the post-growth anneal treatments and cool-down rates on the concentrations of native defects.
389
Authors: Sung Wook Huh, A.Y. Polyakov, Hun Jae Chung, Saurav Nigam, Marek Skowronski, E.R. Glaser, W.E. Carlos, Mark A. Fanton, N.B. Smirnov
Abstract: Deep electron and hole traps were studied in a series of high purity 6H-SiC single crystals grown by Halide Chemical Vapor Deposition (HCVD) method at various C/Si flow ratios and at temperatures between 2000 oC and 2100 oC. Characterization included Low Temperature Photoluminescence (LTPL), Deep Level Transient Spectroscopy (DLTS), Minority Carrier Transient Spectroscopy (MCTS), and Thermal Admittance Spectroscopy (TAS) measurements. Concentrations of all deep traps were shown to strongly decrease with increased C/Si flow ratio and with increased growth temperature. The results indicate that the majority of deep centers in 6H-SiC crystals grown by HCVD are due to native defects or complexes of native defects promoted by Si-rich growth conditions. The observed growth temperature dependence of residual donor concentration and traps density is explained by increasing the effective C/Si ratio at higher temperatures for the same nominal ratio of C and Si flows.
497
Authors: Hun Jae Chung, Sung Wook Huh, A.Y. Polyakov, Saurav Nigam, Qiang Li, J.R. Grim, Marek Skowronski, E.R. Glaser, W.E. Carlos, Jaime A. Freitas, Mark A. Fanton
Abstract: Undoped 6H- and 4H-SiC crystals were grown by Halide Chemical Vapor Deposition (HCVD). Concentrations of impurities were measured by various methods including secondary-ion-mass spectrometry (SIMS). With increasing C/Si ratio, nitrogen concentration decreased and boron concentration increased as expected for the site-competition effect. Hall-effect measurements on 6H-SiC crystals showed that with the increase of C/Si ratio from 0.06 to 0.7, the Fermi level was shifted from Ec-0.14 eV (nitrogen donors) to Ev+0.6 eV (B-related deep centers). Crystals grown with C/Si > 0.36 showed high resistivities between 1053 and 1010 4cm at room temperature. The high resistivities are attributed to close values of the nitrogen and boron concentrations and compensation by deep defects present in low densities.
625
Authors: Howard E. Smith, Kurt G. Eyink, W.C. Mitchel, M.C. Wood, Mark A. Fanton
Abstract: A multiple data point version of the industry standard, two data point raster-changing procedure is employed to measure low levels (< 1 x 1017 atoms/cm3) of nitrogen (N) in silicon carbide (SiC) by SIMS (Secondary Ion Mass Spectrometry). A current-changing procedure is also employed. Together, these are used evaluate the assumptions of the standard method, to separate and measure the components of background signal, and to improve upon the precision and accuracy of the standard method. The risk of poor precision in the two-point method is demonstrated, as is the improvement provided by the multiple-point method. Results show that, in addition to the wellknown N memory background, adsorption background can contribute significantly to the N signal. In general, establishing the presence of adsorption gas in this way can be used to warn of the presence of ionization background, which is not measurable per se.
617
Authors: Serguei I. Maximenko, Jaime A. Freitas, N.Y. Garces, E.R. Glaser, Mark A. Fanton
Abstract: The behavior of the D1 center in semi-insulating 4H-SiC substrates revealed by low-temperature photoluminescence was investigated after post-growth high temperature anneals between 1400 and 2400oC. The influence of different post-anneal cooling rates was also studied. The optical signature of D1 was observed up to 2400oC with intensity maxima at 1700 and 2200oC. We propose that the peak at 1700°C can be related to the formation and subsequent dissociation of SiC native defects. It was found that changes in the post-annealing cooling rate drastically influence the behavior of the D1 center and the concentrations of the VC, VSi, VC-VSi and VC-CSi lattice defects.
429
Authors: Saurav Nigam, Hun Jae Chung, Sung Wook Huh, J.R. Grim, A.Y. Polyakov, Mark A. Fanton, B.E. Weiland, David Snyder, Marek Skowronski
Abstract: Growth rates and relative stability of 6H- and 4H-SiC have been studied as a function of growth conditions during Halide Chemical Vapor Deposition (HCVD) process using silicon tetrachloride, propane and hydrogen as reactants. The growth temperature ranged from 2000 to 2150 oC. Silicon carbide crystals were deposited at growth rates in the 100-300 μm/hr range in both silicon- and carbon-supply limited regimes by adjusting flows of all three reactants. High resolution x-ray diffraction measurements show that the growth on Si-face of 6H- and C-face of 4H-SiC substrates resulted in single crystal 6H- and 4H-SiC polytype, respectively. The growth rate results have been interpreted using thermodynamic equilibrium calculations.
27
Authors: Mark A. Fanton, R.L. Cavalero, R.G Ray, B.E. Weiland, W.J. Everson, David Snyder, Rick D. Gamble, Ed Oslosky
Abstract: The effects of growth conditions, diffusion barrier coatings, and hot zone materials on B incorporation in 6H-SiC crystals grown by physical vapor transport (PVT) were evaluated. Development of high purity source material with a B concentration less than 1.8x1015 atoms/cm3, was critical to the growth of boules with a B concentration less than 3.0x1016 atoms/cm3. Application of refractory metal carbide coatings to commercial graphite to serve as boron diffusion barriers and the use of very high purity pyrolytic graphite components ultimately led to the growth of SiC boules with boron concentrations as low as 2.4x1015 atoms/cm3. The effect of growth temperature and pressure were closely examined over a range from 2100°C to 2300°C and 5 to 13.5 Torr. This range of growth conditions and growth rates had no effect on B incorporation. Attempts to alter the gas phase stoichiometry through addition of hydrogen gas to the growth environment also had no impact on B incorporation. These results are explained by considering site competition effects and the ability of B to diffuse through the graphite growth cell components.
47
Authors: A.Y. Polyakov, Mark A. Fanton, Marek Skowronski, Hun Jae Chung, Saurav Nigam, Sung Wook Huh
Abstract: A novel approach to the high growth rate Chemical Vapor Deposition of SiC is described. The Halide Chemical Vapor Deposition (HCVD) method uses SiCl4, C3H8 (or CH4), and hydrogen as reactants. The use of halogenated Si source and of separate injection of Si and C precursors allows for preheating of source gases without causing premature chemical reactions. The stoichiometry of HCVD crystals can be controlled by changing the C/Si flow ratio and can be kept constant throughout growth, in contrast to the Physical Vapor Transport technique. HCVD was demonstrated to deposit high crystalline quality, very high purity 4H- and 6H-SiC crystals with growth rates comparable to other bulk SiC growth techniques. The densities of deep electron and hole traps are determined by growth temperature and C/Si ratio and can be as low as that found in standard silane-based CVD epitaxy. At high C/Si flow ratio, the resistivity of HCVD crystals exceeds 105 _cm. These characteristics make HCVD an attractive method to grow SiC for applications in high-frequency and/or high voltage devices.
21
Authors: Mark A. Fanton, Qiang Li, A.Y. Polyakov, R.L. Cavalero, R.G Ray, B.E. Weiland, Marek Skowronski
Abstract: The effects of H2 addition to the growth ambient during physical vapor transport (PVT) growth of 6H and 4H SiC were investigated using SIMS, DLTS and Hall effect measurements. Using this hybrid physical-chemical vapor transport (HPVT) approach, boules were grown using Ar-H2 and He-H2 mixtures with H2 concentrations up to 50 at%. Thermodynamic modeling suggests that addition of H2 improves the carbon transport in HPVT compared to standard PVT. This should lead to a substantial decrease in the concentration of residual N donors and the concentration of electron traps. This is confirmed by the experimental results. As expected, the source transport rate increased as H2 was added to the growth environment due to increased C transport. The background nitrogen concentration and the free electron density decreased significantly with increasing H2 concentration. The formation of electron traps (activation energies of 0.4 eV, 0.6-0.65 eV, 0.7 eV, 0.9 eV and 1 eV) was also strongly suppressed. These changes were observed for H2 concentrations as low as 4 at%. The decreased N concentration improves the ability to produce high resistivity SiC material, and for H2 concentrations as high as 10-25%, the very first wafers cut from the seed end of the boules have a resistivity exceeding 106 cm.
103
Authors: Qiang Li, A.Y. Polyakov, Marek Skowronski, Edward K. Sanchez, Mark J. Loboda, Mark A. Fanton, Timothy Bogart, Rick D. Gamble, N.B. Smirnov, Yuri N. Makarov
Abstract: For undoped 6H-SiC boules grown by physical vapor transport the variations of resistivity, of the type and density of deep electron and hole traps, and of the concentration of nitrogen and boron were studied as a function of position in the cross section normal to the growth axis and along the growth direction. It was observed that the concentrations of all deep electron and hole traps decreased when moving from seed to tail of the boule and from the center to the edge of the wafers. Modeling of the growth process suggests that the C/Si ratio increases in a similar fashion and could be responsible for observed changes. We also discuss the implications of such stoichiometry changes on compensation mechanisms rendering the crystals semi-insulating and on electrical uniformity of SI-SiC wafers.
51
Showing 1 to 10 of 11 Paper Titles