Papers by Author: Muhammad Riza

Paper TitlePage

Authors: Erry Yulian T. Adesta, Muhammad Riza, Mohammad Yeakub Ali
Abstract: Cermets become increasingly popular cutting insert in recent years. They are generally good when accuracy and finish are criteria for the operation. Several improvements have been made to increase their performance in machining process such as higher resistance to thermal deformation and lower conductivity than carbide tools that wear rapidly. This study is to investigate cutting force and tool wear under different rake angles in high speed machining process. Experiments were carried out by using cermet insert (CT5015). Different rake angles have been applied in the experiments which are 0o, -3o. -6o, -9o and -12o respectively with cutting speed 1000 m/minute and feed rate 800 mm/minute. For every single pass of cutting, cutting force, wear rate and cutting temperature were measured respectively by surface roughness tester, dynamometer, Scanning Electron Microscope (SEM) and infrared thermometer. The experimental results showed that the more negative angles the higher cutting force produced. Simultaneously, cutting temperature increases following the incremental of cutting force. It caused wear occurred faster and lead to reduce the life of cermet inserts.
633
Authors: Muhammad Riza, Erry Yulian Triblas Adesta, M. Yuhan Suprianto
Abstract: Cutting temperature generated during high speed machining operations has been recognized as major factors influence tool performance and workpiece geometry. This paper aims to model the cutting temperature and to investigate cutting temperature behaviours when contour-in tool path strategy applied in high speed end milling process. The experiments were carried out on CNC vertical machining center by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. Results obtained indicate that cutting temperature is high in the initial stage of milling and at the corners region or turning points region. Portion of radial width of cut with workpiece in combination with the abrupt change of the milling path direction occur particularly in acute internal corners of a pocket leads to rise of cutting temperature.
47
Authors: Roshaliza Hamidon, Erry Y.T. Adesta, Muhammad Riza, Mohammad Iqbal
Abstract: In machining operation of mould cavities, the tool travels in various straight and corner profiles following predetermined toolpath. Such condition results in a fluctuation of cutting forces that may produce bad surface finish. The objective of this study is to investigate the most influential parameters on cutting operation for both straight and corner profiles of pocketing operation. Cutting speeds of 150, 200 and 250m/min, feedrates from 0.05, 0.1, 0.15 mm/tooth and depths of cut of 0.1, 0.15 and 0.2 mm were selected for the cutting processes. Taguchi L9 orthogonal array with Pareto ANOVA analysis was employed to analyze the effects of the selected parameters. The result demonstrates there are different effects of cutting parameters on cutting forces for straight and corner profiles. Furthermore, it was found that cutting speed and feedrate are prevailing factors that affected cutting forces for both types of profile.
361
Authors: Mohammad Yuhan Suprianto, Erry Yulian T. Adesta, Muhammad Riza
Abstract: The aim of the present study is to investigate the influence of cutter engagement on cutting forces in end milling process of AISI H13 (48 HRc). The experiments were carried out on CNC vertical machining center. The machining conditions are as follows: Vc = 150, 200 and 250 m/min, fz = 0.05, 0.1 and 0.15 mm/tooth; a = 0.1, 0.15 and 0.2 mm for every cutting process. Central Composite Design with 20 runs was employed. Data analysis showed that cutter engagement influence the cutting force for the end milling process of hard material H13 in the same pattern to the similar experiment of different material. The present study of cutter engagement will be useful in tool path creation which is important for mold and die machining. The cutter engagement study related to cutting force in high speed end milling of AISI H13 has not yet been established. This study will help the NC programmers in choosing the suitable tool path that will give stable, productive, and more efficient milling process
70
Authors: Irfan Hilmy, Erry Yulian Triblas Adesta, Muhammad Riza
Abstract: Friction Stir Welding (FSW) is getting its popularity because it is considered as an environmentally friendly manufacturing. Homemade FSW tool to be attached to a conventional milling machine was designed and fabricated. Experimental investigation of FSW process of the Aluminum alloy work piece to observe its heat generation was performed. Since heat generation is the main objective in a FSW process, the importance of identification of heat generation performance in a welded specimen is paramount. Heat generation of a welded specimen during FSW was measured using infra red thermal camera. The limitation of the measurement is it only captured the heat generation at surrounding area and surface of the welded specimen. Therefore, the heat generation inside contact area could not be identified. To overcome this problem, a finite-element model of the FSW process was developed. A model consists of a solid model of half the welded specimen since the symmetrical behavior of the geometry and boundary condition was assumed. Heat transfer analysis of a solid body model of a work piece was computed. It was observed that FSW parameters which involved dominantly in the heat generation were spindle speed, feeding rate and normal force. The heat generation model of FSW process was validated with the one from the experimental investigation. Good agreement between the numerical and the experimental investigation result has been made.
200
Authors: Muataz H.F. Al Hazza, Erry Yulian Triblas Adesta, Muhammad Riza, M.Y. Suprianto
Abstract: Power consumption cost is one of the main integral parts of the total machining cost, but it has not given the proper attention when minimizing the machining cost. In this paper, the optimal machining parameters for continuous machining are determined with respect to the minimum power consumption cost with maintaining the surface roughness in the range of acceptance. The constraints considered in this research are cutting speed, feed rate, depth of cut and rake angle. Due to complexity of this machining optimization problem, a multi objective genetic algorithm (MOGA) was applied to resolve the problem, and the results have been analyzed.
95
Authors: Erry Yulian Triblas Adesta, Muataz H.F. Al Hazza, M.Y. Suprianto, Muhammad Riza
Abstract: Surface roughness affects the functional attributes of finished parts. Therefore, predicting the finish surface is important to select the cutting levels in order to reach the required quality. In this research an experimental investigation was conducted to predict the surface roughness in the finish end milling process with higher cutting speed. Twenty sets of data for finish end milling on AISI H13 at hardness of 48 HRC have been collected based on five-level of Central Composite Design (CCD). All the experiments done by using indexable tool holder Sandvick Coromill R490 and the insert was PVD coated TiAlN carbide. The experimental work performed to predict four different roughness parameters; arithmetic mean roughness (Ra), total roughness (Rt), mean depth of roughness (Rz) and the root mean square (Rq).
99
Authors: Muataz H.F. Al Hazza, Erry Yulian Triblas Adesta, Muhammad Riza, M.Y. Suprianto
Abstract: In finishing end milling, not only good accuracy but also good roughness levels must be achieved. Therefore, determining the optimum cutting levels to achieve the minimum surface roughness is important for it is economical and mechanical issues. This paper presents the optimization of machining parameters in end milling processes by integrating the genetic algorithm (GA) with the statistical approach. Two objectives have been considered, minimum arithmetic mean roughness (Ra) and minimum Root-mean-square roughness (Rq). The mathematical models for the surface roughness parameters have been developed, in terms of cutting speed, feed rate, and axial depth of cut by using Response Methodology Method (RSM). Due to complexity of this machining optimization problem, a multi objective genetic algorithm (MOGA) has been applied to resolve the problem, and the results have been analyzed.
103
Showing 1 to 8 of 8 Paper Titles