Papers by Author: Olivério Moreira Macedo Silva

Paper TitlePage

Authors: Helio R. Simoni, Eduardo Saito, Claudinei dos Santos, Felipe Antunes Santos, Alfeu Saraiva Ramos, Olivério Moreira Macedo Silva
Abstract: In this work, the effect of the milling time on the densification of the alumina ceramics with or without 5wt.%Y2O3, is evaluated, using high-energy ball milling. The milling was performed with different times of 0, 2, 5 or 10 hours. All powders, milled at different times, were characterized by X-Ray Diffraction presenting a reduction of the crystalline degree and crystallite size as function of the milling time increasing. The powders were compacted by cold uniaxial pressing and sintered at 1550°C-60min. Green density of the compacts presented an increasing as function of the milling time and sintered samples presented evolution on the densification as function of the reduction of the crystallite size of the milled powders.
Authors: Sandro Aparecido Baldacim, Olivério Moreira Macedo Silva, Carlos Alberto Alves Cairo, Kátia Celina da Silva Richetto, Cosme Roberto Moreira Silva
Authors: José Vitor C. Souza, Maria do Carmo de Andrade Nono, Olivério Moreira Macedo Silva, M.V. Ribeiro
Abstract: There has been a great interest for improving the machining of cast iron materials in the automotive and other industries. Comparative studies for tool used to machine grey cast iron (CI) and compacted graphite iron (CGI) on dry machining were also performed in order to find out why in this case the tool lifetime is not significantly higher. However the machining these materials while considering turning with the traditional high-speed steel and carbide cutting tools present any disadvantages. One of these disadvantages is that all the traditional machining processes involve the cooling fluid to remove the heat generated on workpiece due to friction during cutting. This paper present a new generation of ceramic cutting tool exhibiting improved properties and important advances in machining CI and CGI. The tool performance was analyzed in function of flank wear, temperature and roughness, while can be observed that main effects were found for tool wear, were abrasion to CI and inter-diffusion of constituting elements between tool and CGI, causing crater. However the difference in tool lifetime can be explained by the formation of a MnS layer on the tool surface in the case of grey CI. This layer is missing in the case of CGI.
Authors: Sandro Aparecido Baldacim, Olivério Moreira Macedo Silva, Claudinei dos Santos, Cosme Roberto Moreira Silva
Abstract: The important factor to consider for successful ceramics composites development is the need of matching the whiskers and matrix characteristics, taking into account the chemical compatibility of the sintering aids utilized. The purpose of this work was to analyze and compare use of rare earth concentrate (CTR) and yttrium oxide, as sintering aids, and its influence in the densification and physical/mechanical properties of hot pressed and sintered Si3N4-SiC(w). The CTR powder materials present high yttrium oxide percentage and its production is cheaper than the additives usually used in ceramic materials, such as Y2O3. For physical and mechanical properties evaluation, specific mass, crystalline phases, micrographs analysis, microhardness and fracture toughness were measured, showing similar results between the two sintering aids. Therefore, this study shows the possibility of obtaining low processing cost products with the use of rare earth concentrate. Meanwhile, more characterization steps are necessary for analyzing its behavior at elevated temperatures.
Authors: Olivério Moreira Macedo Silva, Sandro Aparecido Baldacim, Cosme Roberto Moreira Silva
Authors: Claudinei dos Santos, Kurt Strecker, M.J.R. Barboza, Sandro Aparecido Baldacim, Francisco Piorino Neto, Olivério Moreira Macedo Silva, Cosme Roberto Moreira Silva
Abstract: The creep behavior of hot-pressed Si3N4 ceramics was investigated. The proposal of this work is to investigate the use of yttrium-rare earth oxide mixture, CRE2O3, produced at FAENQUIL, as sintering additive, since the cost of production of this material is 80% inferior to Y2O3. These ceramics were obtained by uniaxial hotpressing using different additive contents and mixtures (CRE2O3-Al2O3 or CRE2O3- AlN). Compressive creep tests were carried out at 13000C and 300 MPa, in air. The Si3N4-CRE2O3-Al2O3 ceramics demonstrated that the creep resistance is inversely proportional to the additive content. Mixtures with high intergranular phase content presented low creep resistance due to high oxidation and more pronounced softening of the intergranular phase. Si3N4-CRE2O3-AlN ceramics demonstrated better creep resistance with a steady-state creep rate of 7 x 10-8 s-1. This behavior is related to the a-SiAlON content, a solid solution of Si3N4 that incorporates a great fraction of intergranular phase, decreasing the amount of intergranular phase.
Authors: Claudinei dos Santos, Kurt Strecker, M.J.R. Barboza, Sandro Aparecido Baldacim, Francisco Piorino Neto, Olivério Moreira Macedo Silva, Cosme Roberto Moreira Silva
Abstract: a−SiAlON (a’) is a solid solution of a−Si3N4, where Si and N are substituted by Al and O, respectively. The principal stabilizers of the a’-phase are Mg, Ca, Y and rare earth cations. In this way, the possible use of the yttrium-rare earth oxide mixture, CRE2O3, produced at FAENQUIL, in obtaining these SiAlONs was investigated. Samples were sintered by hotpressing at 17500C, for 30 minutes, using a sintering pressure of 20 MPa. Creep behavior of the hot-pressed CRE-a-SiAlON/b-Si3N4 ceramic was investigated, using compressive creep tests, in air, at 1280 to 1340 0C, under stresses of 200 to 350 MPa, for 70 hours. This type of ceramic exhibited high creep and oxidation resistance. Its improved high-temperature properties are mainly due to the absence or reduced amount of intergranular phases, because of the incorporation of the metallic cations from the liquid phase formed during sintering into the Si3N4 structure, forming a a’/b composite.
Authors: Claudinei dos Santos, Kurt Strecker, M.J.R. Barboza, Francisco Piorino Neto, Olivério Moreira Macedo Silva, Cosme Roberto Moreira Silva
Abstract: Commercial α−Si3N4, Al2O3 and a mixed yttrium and rare earth oxides, RE2O3, were used as starting-powders. Powder batches were milled using different Al2O3/RE2O3 contents, as additive. Hot-pressing was done at 1750oC-30 min-20MPa in N2 atmosphere. Specimens neat to 6x3x3mm3 were polished and characterized by XRD and SEM. Specimens were submitted to creep tests, under compressive stresses between 100 and 350 MPa at temperatures ranging from 1250 to 1300oC in air. Higher additive amounts resulted in larger grains of higher aspect ratios and in a decreased anisotropy in the hot-pressed ceramics. The compressive creep behavior depends on the intergranular phase content. While higher amounts of additives resulted in higher creep rates, • ε , and higher stress exponents, n, the activation energy Qss, has been inferior for samples with lower additive contents. Grain sliding has been identified to be the predominant mechanism responsible for creep deformation of these ceramics.
Authors: José Vitor C. Souza, Maria do Carmo de Andrade Nono, João Paulo Barros Machado, Olivério Moreira Macedo Silva, F.C.L. Melo, M.V. Ribeiro
Abstract: Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron.
Authors: José Vitor C. Souza, Maria do Carmo de Andrade Nono, Olivério Moreira Macedo Silva, G.V. Martins, João Paulo Barros Machado, M. Pimenta
Abstract: Nowadays, silicon nitride based cutting tools are used to machine cast iron from the automotive industry and nickel superalloys from the aero industries. Advances in manufacturing technologies (increased cutting speeds, dry machining, etc.) induced the fast commercial growth of physical vapor deposition (PVD) coatings for cutting tools, in order to increase their life time. In this work, a new composition of the Si3N4 ceramic cutting tool was developed, characterized and subsequently coated, using a PVD process, with aluminum chromium nitride (AlCrN). The Si3N4 substrate properties were analyzed by XRD, AFM, hardness and fracture toughness. The AlCrN coating was analyzed by AFM, grazing incidence X-ray diffraction (GIXRD) and hardness. The results showed that this PVD coating could be formed homogeneously, without cracks and promoted a higher surface hardness to the insert and consequently it can produce a better wear resistance during its application on high speed machining.
Showing 1 to 10 of 20 Paper Titles