Papers by Author: P. Szakàlos

Paper TitlePage

Authors: P. Szakàlos
Abstract: This paper gives an overview of the different processes of metal dusting (MD) that operate on low and high alloyed iron and nickel base alloys exposed in CO+H2–containing environments with or without water vapour. MD of pure metals like iron and nickel occur with a solely carbon-induced corrosion mechanism. However, in high alloyed materials with strong oxide formers such as Cr and Al, a more complex MD-process takes place which involves both carbon and oxygen in close collaboration. The “alloyed” carbides, i.e normally Cr-containing carbides, formed in such materials are thermodynamically stable with respect to the carbon activity. However, in the reaction front of a MD-pit with non-protective spinel oxide, they destabilise and dissolve due to the influence of the low oxygen activity determined by CO-dissociation. Based on recent results in the field of MD a chart with tentative MD mechanisms is presented as a function of alloy composition and temperature.
Authors: Gunnar Hultquist, C. Anghel, P. Szakàlos
Abstract: For long time it is known that protons in aqueous solutions have a detrimental effect on metallic materials. Relatively recently, it has also been observed in aqueous solution that the pitting corrosion resistance of Cr, stainless steel 304 and 310 decreases and the anodic dissolution rate increases due to the presence of hydrogen in the metal. In gas phase a high oxidation rate has been observed for hydrogen containing Cr and Fe. Hydrogen in the substrate can also enhance the oxidation of Fe in SS 316 and As in GaAs. All these results suggest enhanced dissolution in aqueous solution and enhanced oxide growth at the oxide/gas interface in gas phase oxidation due to hydrogen promoted outward-transport of substrate components. A possible mechanism for such out-transport is an increased metal ion diffusivity in the metal-oxide due to a high abundance of metal ion vacancies generated by hydrogen. In contrast to all the above examples, also positive effects of hydrogen have been identified under certain conditions. In an attempt to understand both the negative and the positive effects the concept of a beneficial, balanced oxide growth is used. In this concept a certain amount of hydrogen can be beneficial in the oxidation by improving the balance between oxygen-ion and metalion transport, leading to more dense and protective oxides. Depending on the temperature, H2 in air is considered as either a sink or a source for hydrogen in materials.
Showing 1 to 2 of 2 Paper Titles