Papers by Author: Robert C. Wimpory

Paper TitlePage

Authors: Robert C. Wimpory, Carsten Ohms
Abstract: Up to now the tendency in residual stress determination (using neutron diffraction) has been to assess the uncertainties in terms of the propagation of ‘fitting uncertainty’ of the Bragg peaks only. There are many other sources of uncertainty, some more obvious than others, that should be taken into account or at least be considered in terms of their impact when interpreting the data. These cover not just the instrument calibration and characteristics and the technique itself but also the properties of the sample. A discussion of how best to combine the uncertainty of all contributing factors will be made. These factors (on the sample side) will include variations in chemical composition, grain size related problems, surfaces/interfaces cutting through the sampling volume, texture variations within the sampling volume, presence of intergranular strains (plastic anisotropy) etc. The knowledge of appropriate elastic constants, for example, and their uncertainty is necessary for a more reliable stress determination. One should also be aware of the more subtle influences on the elastic constants such as texture or chemical variation. This should be a step in the right direction for a ‘unified uncertainty analysis’ covering all possible aspects of uncertainty in residual stress determination using neutron diffraction.
2487
Authors: Tillman Fuß, Robert C. Wimpory, M. Klaus, C. Genzel
Abstract: Residual stress depth profiling can be performed by means of non-destructive diffraction methods as well as semi destructive mechanical techniques like the hole drilling method. By none of these methods is it possible to cover the complete depth range being affected by residual stress fields which extend from the surface into the volume of the material. In this paper it is demonstrated that the combined application of surface sensitive X-ray methods and neutron diffraction used normally for bulk stress analysis allows for the study of residual stress gradients generated by mechanical surface treatment. Furthermore, it is shown that the hole drilling method can bridge the information gap between X-ray and neutron diffraction.
411
Authors: Jeremy Epp, Thomas Hirsch, Martin Hunkel, Robert C. Wimpory
Abstract: The present work has been executed within the framework of the collaborative research center on Distortion Engineering (SFB 570) in order to evaluate the residual stress state of a disc after carburizing and quenching as well as to validate a simulation procedure. The combined use of X-ray and neutron diffraction analysis provided information about the residual stress states in the whole cross section. However, the stress free lattice spacing d0 for the neutron diffraction experiments is problematic and induces systematic uncertainties in the results and the application of a force balance condition to recalculate d0 might be a solution for improving the reliability of the results. Comparison of experimental results with simulation showed that an overall satisfying agreement is reached but discrepancies are still present.
37
Authors: Robert C. Wimpory, Farid R. Biglari, Rainer Schneider, Kamran M. Nikbin, N.P. O'Dowd
Abstract: This paper considers the measurement of residual stresses induced by mechanical loading in a weld Type 347 stainless steel. The work is based in part on an ongoing Round Robin collaborative effort by the Versailles Agreement on Materials and Standards, Technical Working Area 31, (VAMAS TWA 31) working on ‘Crack Growth of Components Containing Residual Stresses’. The specific objective of the work at Imperial College London and HMI, Berlin is to examine how residual stresses and prior straining and subsequent relaxation at high temperature contribute to creep crack initiation and growth for steels relevant to power plant applications. Tensile residual stresses have been introduced in the weld by pre-compression and neutron diffraction measurements have been carried out before and after stress relaxation at 650 oC. Significant relaxation of the residual stresses has been observed, in agreement with earlier work on a stainless steel. Preliminary results suggest that the strains local to the crack drop by over 60% after 1000 h relaxation at 650 oC for the weld steel. The results have been compared with finite element studies of elastic-plastic pre-compression and stress relaxation due to creep.
311
Authors: L.K. Keppas, Dimitrios Elias Katsareas, Robert C. Wimpory, N.K. Anifantis, Anastasius Youtsos
Abstract: Finite element prediction of residual stresses in a 3-bead letterbox-type repair weld is investigated in the present study. The repair is performed on a 2¼CrMo low alloy ferritic steel plate, containing a machined central groove where three weld beads are deposited using AL CROMO S 225 2¼CrMo electrodes. The proposed simulation procedure, which is based on decoupled thermal and mechanical analyses and the “birth and death of elements” technique, is evaluated through comparison of predicted stresses with neutron diffraction testing data. Parametric studies include modelling aspects such as 2-D plane strain versus 3-D analysis, re-melting of weld material during sequential bead deposition, melting of base plate near the fusion line and annealing. It is concluded that numerical results come, in general, in satisfied agreement with the experimental data.
445
Authors: N.W. Bonner, Robert C. Wimpory, G.A. Webster, A. Tony Fry, F.A. Kandil
653
Authors: Robert C. Wimpory, Michael Hofmann, Joana Rebelo-Kornmeier, Mirko Boin, Carsten Ohms
Abstract: The accurate determination of strain during measurement using neutron diffraction depends on many factors. The statistical uncertainty of the diffraction data is not always the most important contributor to the total uncertainty in the measured strain. Other contributors, such as sample positioning, size and shape of the sampling (gauge) volume and the size and distribution of grains within the sampling volume, often play an important role as well. Grain size issues have been the least studied and their impact is often ignored even though the potential uncertainty contribution can be large. Certain methods such as oscillating the sample during measurement can help in reducing the magnitude of the grain size effect and hence also that of the related uncertainty contribution. A thorough characterization of uncertainties due to grain size effects however, in terms of absolute values that should be added to the statistical peak fitting uncertainties has not yet been implemented. This paper will present an improved method to characterize and estimate absolute uncertainty values due to grain size effects.
143
Authors: A.M. Venter, M.W. van der Watt, Robert C. Wimpory, Rainer Schneider, P.J. McGrath, M. Topic
Abstract: Bending of metal plates with high-energy laser beams presents a flexible materials forming technique where bending results from the establishment of a steep temperature gradient through the material thickness. This inevitably leads to non-uniform thermal expansion/contraction and subsequently residual stresses. Non destructive residual strain mapping with neutron diffraction through the 8mm thickness of a series WA 300 grade structural steel plate samples, focused on the region straddling the centerline of the heating bead location, shows the presence of large residual stress fields. Directly below the laser track the longitudinal strains are tensile and dominant, normal strains compressive and transverse strains slightly tensile. The magnitudes of the strains decrease outside the width of the laser beam footprint. The first laser pass induces throughthickness strains close to yield, whereafter their magnitudes decrease with increased number of laser beam passes. A comprehensive mapping of the longitudinal stresses as function of the number of laser passes is given.
63
Authors: Joana Rebelo-Kornmeier, Jens Gibmeier, Michael Hofmann, Robert C. Wimpory
Abstract: For non destructive stress analysis of surface treated steel samples the application of laboratory X rays or high energy synchrotron radiation in reflection mode covers the region from some micrometers up to a depth of about 150 - 200 µm. To access depth regions deeper than 200 µm the incremental layer removal technique in combination with the repeated application of X‑ray stress analysis for the newly generated surfaces can be used. However, this procedure is destructive, laborious and furthermore, it has to be checked whether corrections have to be applied due to stress relaxation. By using neutron radiation penetration depths generally up to several millimetres can be achieved non destructively [1]. However neutron measurements are critical at the surface. When scanning a sample surface, aberration peak shifts caused by so called spurious strains arise due to the fact that the gauge volume defined by the primary and secondary optics is partially outside of the sample. These aberration peak shifts can be of the same order of magnitude as the peak shifts related to residual strains [2-6]. In this exemplary study it will be demonstrated that, by optimising the bending radius of a Si (400) monochromator, the spurious surface strains can be strongly reduced when compared to the values obtained with a traditional Ge (311) mosaic monochromator, even when the gauge volume is mainly out of the surface. The objective of the experiments is to find the optimal monochromator settings for the Si (400) monochromator at the STRESS-SPEC instrument at the research reactor FRM II, Munich, Germany. For the parametric studies a stress free steel sample of the fine grained construction steel, S690QL was used. The optimised conditions for the Si (400) monochromator that resulted from the systematic studies were applied to a shot peened plate of steel SAE 4140. The residual stress distribution is analysed by means of through surface strain scanning. The residual stress gradient obtained is in very good agreement with the well characterised residual stress depth profile obtained within a round robin test in the scope of the BRITE-EURAM-project ENSPED (European Network of Surface and Prestress Engineering and Design) [7]. The results indicated that surface residual stress profiles can be measured with neutrons up to 200 µm underneath the surface without time consuming and laborious surface effect corrections.
399
Authors: S. Kamel, Robert C. Wimpory, Michael Hofmann, Kamran M. Nikbin, N.P. O'Dowd
Abstract: This paper considers the prediction of the effects of tensile and compressive residual stress in fracture mechanics specimens by the application of a mechanical pre-load. This is considered in the context of a ‘C’ shape specimen which is mechanically pre-tensioned or pre-compressed to produce, respectively, a compressive or tensile residual stress in the region where the crack is introduced. Finite-element analysis is performed to simulate the pre-loading and the subsequent fracture loading of the cracked specimens. The finite-element predictions are compared with experimental data including residual stress measurements using neutron diffraction. A discussion is presented on modelling and material issues pertaining to the use of mechanical pre-loading as a means for introducing residual stress.
275
Showing 1 to 10 of 19 Paper Titles