Papers by Author: Shahin Khameneh Asl

Paper TitlePage

Authors: Mohammad Reza Saghi Beyragh, Shahin Khameneh Asl, Rahim Vasfpour, Farshid Tazesh, Parisa Khallagi
Abstract: HVOF-sprayed coatings (WC–17%Co) and hard chromium coatings corrosion resistances have been compared through electrochemical polarization test in 3.5% NaCl solution. WC–17%Co alloy coatings were deposited on mild steel substrates by High Velocity Oxy-Fuel (HVOF) spray process. The layers of standard and crack free hard chromium coatings were prepared by using Direct Current (DC) and Pulse Current (PC) electroplating process on the mild steel substrates. Hard chromium coatings was characterized as a reference material, to verify whether HVOF-sprayed coatings are suitable as a hard chromium coatings replacement. The microstructure of the coatings was examined by OM, SEM and XRD. Standard hard chromium coatings passivate in NaCl environment, but crack free hard chromium coatings were prepared by using Pulse Current (PC) electroplating do not passivate. The lowest corrosion current densities (Icorr) were recorded for crack free hard chromium coatings. Comparative electrochemical test results showed that, the Standard hard chromium coating has the highest Icorr and were significantly damaged after the electrochemical tests. It is seem to be that WC–17%Co alloy coatings can be substituted for standard hard chromium coatings but crack free chromium coatings bring new challenge for HVOF-sprayed coatings!
173
Authors: M. Heydarzadeh Sohi, Shahin Khameneh Asl, Kazuyuki Hokamoto, M. Rezvani
Abstract: Five types of tungsten carbide based powders with different chemical compositions (WC-12Co, WC-17Co, WC-10Ni, WC-10Co-4Cr and WC- 20Cr-7Ni) were deposited onto ST37 mild steel substrate using high velocity oxy fuel (HVOF) spray technique. The feedstock powders and sprayed coatings were studied by using X-ray diffraction (XRD), and differential thermal analyzing (DTA). The results were shown during HVOF thermal spraying, WC-M powders become partially melted before being sprayed on the surface of the substrate with supersonic speed. In these types of coatings, the crystallographic structures are normally non equilibrium, because the cooling rates of the deposited splats are very high due to the cold substrate acting as a thermal sink. These partially melted powders are then rapidly solidified to an amorphous phase. XRD analysis showed that the amorphous phase was existed in all of the as sprayed coatings. The amorphous phase in WC-12Co, WC-17Co and WC-10Ni coatings was transformed to crystalline phases by heat treatment at high temperature. Heat treatment of these coatings at high temperature also resulted in partially dissolution of WC particles and formation of new crystalline phases. In cobalt base coatings, the new phases were eta carbide phases like Co6W6C and Co3W3C but in WC-10Ni coating a NiW intermetallic phase was formed. Heat treatment of WC-10Co-4Cr and WC-20Cr-7Ni coatings did not change the amorphous phases in these coatings. Differential thermal analysis of cobalt containing coatings revealed an exothermic reaction at approximately 880°C. This exothermic reaction may be related to the transformation of the amorphous phase to eta phases. On the contrary, DTA analysis of feedstock powders of these coatings showed an endothermic reaction at approximately 1000°C. DTA analyses of nickel containing cermets also showed similar results. Differential thermal analysis of chromium containing cermets did not show any noticeable exothermic or endothermic reactions.
155
Authors: Mahdi Ghassemi Kakroudi, Shahin Khameneh Asl
Abstract: A pulse-echo technique, based on ultrasonic "long-bar" mode (LBM) velocity measurements, working up to 1700°C is described. Magnetostrictive transducers and ultrasonic lines used in a 40-350 kHz frequency range are detailed. The conditions of choice of fundamental parameters (frequency, line geometry, sample size) are discussed in relation with the nature and the microstructure of the materials under test. This technique can be used to study the variations of elastic moduli of materials at high temperature.
59
Authors: Shahin Khameneh Asl, Mohammad Reza Saghi Beyragh, Mahdi Ghassemi Kakroudi
Abstract: Interest in nanomaterials has increased in recent years. This is due to the potential of size reduction to nanometric scale to provide properties of materials such as hardness, toughness, wear, and corrosion resistance. The current study is focused on WC-Co cermet coats, materials that are extensively used in applications requiring wear resistance. In this work, WC-17Co powder was thermally sprayed onto mild steel using High Velocity Oxy Fuel (HVOF) spray technique. The nanostructured specimen was produced from sprayed sample by heat-treating at 1100°C in a vacuum chamber. Their structures were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Polarization and electrochemical impedance spectroscopy (EIS) tests were performed on the both types of coated samples in 3.5% NaCl solution. The amorphous phase in WC-17Co coating was transformed to crystalline phases by heat treatment at high temperatures. The heat treatment of these coatings at high temperature also resulted in partially dissolution of WC particles and formation of new crystalline phases. Generation of these phases produced the nanostructured coating with better mechanical properties. Comparative electro chemical test results showed that, the heat treatment could improve corrosion resistance of the nanostructured WC-17Co coat than the as sprayed coats.
13
Authors: Shahin Khameneh Asl, Mohammad Reza Saghi Beyragh, Neda Faale Noori
Abstract: The current study is focused on WC-Ni cermet coatings, materials that are extensively used in applications requiring wear resistance. In this work, WC-10%Ni powder was thermally sprayed onto mild steel using High Velocity Oxy Fuel (HVOF) spray technique. The nanostructured specimen was produced from sprayed samples by heat-treating at 1100°C in a vacuum chamber. Their structures were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Polarization and electrochemical impedance spectroscopy (EIS) tests were performed on both types of coated samples in 3.5% NaCl solution. The amorphous phase in WC-10%Ni coating was transformed to crystalline phases by heat treatment at high temperatures. Heat treatment of these coatings at high temperature also resulted in partially dissolution of WC particles and formation of new crystalline phases. Generation of these phases produced the nanostructured coating with better mechanical properties. Comparative electro chemical test results showed that, the heat treatment could improve corrosion resistance of the nanostructured WC-10%Ni coating than the as sprayed coatings.
167
Authors: Shahin Khameneh Asl, M. Heydarzadeh Sohi, Kazuyuki Hokamoto, Mitsuhiro Matsuda, Ryuichi Tomoshige, Minoru Nishida
Abstract: In this work, WC-17Co powder was thermally sprayed onto mild steel using HVOF spray technique. The coated specimen was heat treated at 1100°C in a vacuum chamber and was then studied by using transmission electron microscopy (TEM). Post heat treatment resulted in recrystallization of the amorphous phase, formed during thermal spraying, into low carbon eta phase like Co6W6C. TEM results of the heat treated specimens showed that these new nucleated eta phases had very clear crystallographic structure without any crystalline defects. Heat treatment could also transform high carbon carbides like WC and W2C in the as sprayed samples to high carbon eta phases like Co3W3C. High density of dislocations and staking faults noticed in TEM of these phases might be an indication of possible shear mechanism in formation of these carbides.
161
Authors: Shahin Khameneh Asl, M. Heydarzadeh Sohi, S.M.M. Hadavi
427
Showing 1 to 8 of 8 Paper Titles