Papers by Author: T.S. Srivatsan

Paper TitlePage

Authors: T.S. Srivatsan, Mithun Kuruvilla, Lisa Park
Abstract: In this technical manuscript the cyclic stress amplitude controlled fatigue properties and fracture behavior of an emerging titanium alloy (referred to by its designation as ATI 425TM by the manufacturer) is presented and discussed. The alloy was provided as rod stock in the fully annealed condition. Test specimens of the as-received alloy were cyclically deformed under total stress amplitude control at two different stress ratios (R = 0.1 and R = 0.3) with the purpose of establishing the conjoint and mutually interactive influences of magnitude of cyclic stress, load ratio and intrinsic microstructural effects on cyclic fatigue life, final fracture behavior and viable mechanisms governing failure at the microscopic level. The high cycle fatigue resistance of this titanium alloy is described in terms of maximum stress, load ratio, and maximum elastic strain. The final fracture behavior of the alloy under cyclic loading conditions is discussed in light of the mutually interactive influences of intrinsic microstructural features, magnitude of cyclic stress, load ratio and resultant fatigue life.
271
Authors: T.S. Srivatsan, Satish Vasudevan, Lisa Park, R.J. Lederich
Abstract: In this research paper, the cyclic stress amplitude controlled fatigue response and fracture behavior of an Al-Cu (Aluminum Association designation 2219) is presented and discussed. The alloy was provided as a thin sheet in the T62 temper in the fully anodized condition. A small quantity of the as-provided sheet was taken and the surface carefully prepared to remove the thin layer of anodized coating. Test specimens of the alloy, prepared from the two sheets (anodized and non-anodized), were cyclically deformed under stress amplitude control at two different load ratios with the primary objective of establishing the conjoint influence of magnitude of cyclic stress, load ratio and intrinsic microstructural effects on cyclic fatigue life and final fracture characteristics. The high cycle fatigue resistance of the alloy is described in terms of maximum stress, load ratio, and microstructural influences on strength. The final fracture behavior of the alloy sheet is discussed in light of the concurrent and mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the alloy microstructure, magnitude of cyclic stress, and resultant fatigue life.
207
Authors: Xiao Sheng Gao, Gui Hua Zhang, T.S. Srivatsan
Abstract: This paper presents a modified Weibull stress model, which accounts for the effects of plastic strain and stress triaxiality at the crack tip region. The proposed model is applied to predict cleavage fracture in a modified A508 pressure vessel steel. It is demonstrated that the Weibull modulus (m) remains constant in the temperature range considered, while the threshold Weibull stress (σw-min) decreases with an increase in temperature due to reduction of the yield stress and the scale parameter of the Weibull model (σu) increases with temperature reflecting the influences of temperature on both material flow properties and toughness. The proposed model accurately predicts the scatter of the measured fracture toughness data and the strong effects of constraint and temperature on cleavage fracture toughness.
283
Authors: D.C. Lin, C.Y. Kuo, T.S. Srivatsan, M. Petraroli, G.X. Wang
Abstract: A series of experiments conducted on a lead-free eutectic solder (Sn-3.5%Ag) have shown that addition of trace amounts of nanometer-sized particles does have an influence on mechanical properties of materials. In this study, three different types of nanoparticles (copper, nickel and iron) were chosen as the reinforcing candidate. For each particulate reinforcement the reflow process was performed under identical cooling conditions. Addition of trace amounts of nano-particles alters the kinetics governing solidification of the composite solder paste while concurrently exerting an influence on microstructural development, particularly the formation and presence of second phases in the solidified end product. The nano-sized powder particle-reinforced composite solder revealed an increase in microhardness compared to the unreinforced monolithic counterpart.
145
Authors: T.S. Srivatsan, Satish Vasudevan, Lisa Park, R.J. Lederich
Abstract: In this research paper, the cyclic stress amplitude controlled fatigue response and fracture behavior of an Al-Cu-Mg alloy (Aluminum Association designation 2024) is presented and discussed. The alloy was friction stir welded in the T8 temper to provide two plates one having high tensile ductility and denoted as Plate A and the other having low tensile ductility and denoted as Plate B. Test specimens of the alloy, prepared from the two plates, were cyclically deformed under stress amplitude control at two different load ratios with the primary objective of documenting the conjoint influence of magnitude of cyclic stress, load ratio and intrinsic microstructural effects on cyclic fatigue life and final fracture characteristics. The high cycle fatigue resistance of the alloy is described in terms of maximum stress, R-ratio, and microstructural influences on strength. The final fracture behavior of the friction stir welded alloy is discussed in light of the concurrent and mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the alloy microstructure, magnitude of cyclic stress, and resultant fatigue life.
175
Authors: Troy D. Topping, Ying Li, Enrique J. Lavernia, K. Manigandan, T.S. Srivatsan
Abstract: In this paper, the specific influence of quasi-isostatic forging and rolling of cryomilled powder on microstructural development and resultant tensile deformation and fracture behavior of aluminum alloy 5083 is highlighted and comparison made with the coarse grained counterpart. The specific influence and contribution of strain hardening to enhancing strength of the ultra-fine grain microstructure of the aluminum alloy is presented and discussed. It is shown that the capability of the ultra fine grain microstructure to recover strength through the mechanism of work hardening is quite similar to the conventionally processed counterpart. The influence and role of intrinsic microstructural features in governing tensile deformation and fracture behavior is elaborated upon. The viable microscopic mechanisms governing final fracture behavior is discussed in light of the competing and mutually interactive influences of nature of loading, intrinsic microstructural effects, and deformation kinetics. Key Words: aluminum alloy 5083, processing, microstructure, tensile properties, fracture
175
Authors: T.S. Srivatsan, S. Givens, Meslet Al-Hajri, M. Petraroli, R. Radhakrishnan, Tangali S. Sudarshan
Abstract: Micron-sized powders of an Al-7Cr-1Fe alloy were prepared by the technique of Gas Atomization Reaction Synthesis (GARS) at the Ames Laboratory (Ames, Iowa, USA). A pre-alloyed stock of the aluminum alloy was melted and atomized in an inert environment. A mixture of micron-sized and nano-sized powder particles was consolidated in a vacuum environment using the technique of plasma pressure compaction (P2CTM). The powders were initially pulsed at 150oC for 10 minutes and subsequently consolidated at 550oC under a pressure of 40 MPa for 10 minutes. In this paper, the tensile deformation and fracture characteristics of the aluminum alloy are highlighted at two different test temperatures. An attempt is made to elucidate the microscopic mechanisms governing tensile response and fracture in light of the competing and mutually interactive influences of intrinsic microstructural features, deformation characteristics of the constituents of the material, and test temperature.
255
Showing 1 to 7 of 7 Paper Titles