Papers by Author: Xiao Hong Chen

Paper TitlePage

Authors: Yan Li, Xiao Hong Chen, Ping Liu, Lin Hua Gao, Bao Hong Tian
Abstract: The behavior of plastic deformation of Cu-15Cr-0.1Zr in-situ composite under different degree of cold drawing deformation was analyzed by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that both Cu and Cr phases are elongated along cold drawn direction and appear a fibrous morphology; However, Cu phase shows a thread-like fibrous morphology and Cr phase shows a band-like fibrous morphology. The two phases have a coherent relationship of (111)Cu //(011)Cr; When the degree of deformation(ε)is equal to 6.43, the relationship shows// [111]Cu // [110]Cr //cold drawn direction. Furthermore, forming two different morphologies of Cu and Cr phases during cold drawing is also analyzed.
Authors: Wei Li, Ping Liu, Feng Cang Ma, Xin Kuan Liu, Xiao Hong Chen, Yong Hua Rong
Abstract: A nanocrystalline surface layer is produced in Co plate by surface mechanical attrition treatment (SMAT). The characterization of microstructure and composition indicates that elements of Fe, Cr diffuse from hardened steel balls into the surface layer during SMAT. The diffusion phenomenon results in the composition deviation in the surface layer, leading to higher value of saturation magnetization (Ms) for nanocrystalline Co surface layer in comparison with its coarse-grained counterpart.
Authors: Feng Cang Ma, Ping Liu, Wei Li, Xin Kuan Liu, Xiao Hong Chen, Di Zhang
Abstract: In this paper, Ti-1100 composites reinforced with TiB+TiC ceramic particles were fabricated using in situ technologies. Mechanical properties of the composites with different volume fractions of TiB and TiC reinforcements were evaluated by tensile tests at 873K. The breakage of TiB was observed during the failure process of the composite. Strengthening efficiencies of the reinforcements for different composites were calculated. The strengthening mechanisms in this composite during tensile tests were discussed. It was suggested that the effect of the solution of C, which was produced in the preparation process, also can not be ignored for such a composite.
Authors: Xiao Hong Chen, Yan Li, Bao Hong Tian, Yi Zhang, Juan Hua Su, Ping Liu
Abstract: A method of the aluminizing treatment on the surface of Cu-Al-Y alloy with addition of rare earth compound CeCl3 in 1173K was carried out. The followed internal oxidation of the aluminized Cu-Al-Y alloy was also carried out in the commercial nitrogen gas medium to generate Al2O3 dispersed hardening copper matrix composites. The hardness distribution in aluminized layer and microstructure were studied. Results show that the addition of rare earth oxide CeCl3 has great accelerating effect on the aluminizing, the aluminized layer deeper and uniform than that not add CeCl3 at the same condition. It is possible to generate Al2O3 particles dispersed hardening layer depth reached about 200μm in the surface of specimens with aluminizing and internal oxidation technique.
Showing 1 to 4 of 4 Paper Titles