Papers by Author: Xiao Jun Yang

Paper TitlePage

Authors: Xiao Jun Yang, Qing Shan Lan, Yu Ning Zhong
Abstract: The aim of this paper is to present a finite element method to predict buckling characteristics of paper honeycomb sandwich panels with composite skins under dynamic axial compression via ANSYS/LS-DYNA. First of all, some problems of the conventional method using honeycomb plate theory, sandwich laminboard theory and equivalent panel theory were pointed out. In order to develop an effective predicting method, by assuming appropriate periodic boundary condition on the edges, a simplified finite element model on hexagonal structure of a unit cell for sandwich panels was developed utilizing the 3D finite element method. The effective Young's modulus of the cellular wall was obtained from the result of the test on the honeycomb core. Several useful conclusions are drawn about the axial crushing of honeycomb sandwich composites and unit cell and can be used to guide the design of composite structures. The paper further attempts to explain numerical results are well consistent with the corresponding experimental ones.
566
Authors: Xiao Jun Yang, Qing Shan Lan, Yu Ning Zhong
Abstract: The theory of natural frequencies were acquired from vibration experiment, meanwhile, the first order frequencies of honeycomb sandwich structure composites were obtained by using the sandwich laminboard theory and equivalent panel theory via the finite element software ANSYS. The simulation results were compared to the experiment results to get the error of calculation of the two different equivalent methods, thereby we can select more appropriate equivalent method to ensure the veracity of the result analysis and provide a reference for the optimization design of the fiber-paper honeycomb sandwich structure composites.
360
Authors: Xiao Jun Yang, Qing Shan Lan, Yu Ning Zhong, Li Xia Zeng
Abstract: Two equivalent models based on sandwich panel theory and equivalent panel theory were discussed in this paper. By analyzing the performance of fiber - paper honeycomb sandwich structure compound panel by bending load, the computational results are in accordance with test and Engineering software ANSYS. Therefore, it shows that the finite element equivalent models are reasonable and practical for the optimization design of fiber - paper honeycomb sandwich composites.
80
Showing 1 to 3 of 3 Paper Titles