Papers by Author: Xue Li Xia

Paper TitlePage

Authors: Xue Li Xia, Hong Fu Qiang, Wang Guang
Abstract: To evaluate the effect of a converging injector geometry, volumetric flow rate and gallant content on the pressure drop, the velocity and viscosity fields, the governing equations of the steady, incompressible, isothermal, laminar flow of a Power-Law, shear-thinning gel propellant in a converging injector were formulated, discretized and solved. A SIMPLEC numerical algorithm was applied for the solution of the flow field. The results indicate that the mean apparent viscosity decreases with increasing the volumetric flow rate and increasing the gallant content results in an increase in the viscosity. The results indicate also that the convergence angle can produce additional decrease in the mean apparent viscosity of the fluid. The mean apparent viscosity decreases significantly with increasing the convergence angle of the injector, and its value is limited by the Newtonian viscosity η. The effect of the convergence angle on the mean apparent viscosity is more significant than the effect of the volumetric flow rate and the gallant content on the mean apparent viscosity. Additional decreasing the viscosity results in increasing the pressure drop with increasing convergence angle. It is important to injector design that the viscosity decreasing and the pressure drop increasing are took into account together.
2601
Authors: Xue Li Xia, Hong Fu Qiang
Abstract: To evaluate an influence of the various bend diameter ratio Rc/R and velocity on the flow property of gel propellant in a 900 pipe bend, the 3D governing equations of the steady, incompressible, isothermal, laminar flow of a power-law, shear-thinning gel propellant in pipe bend were formulated, discretized and solved, a SIMPLEC numerical algorithm was applied for the solution of the flow field, which on a series of sharp 900 curved pipelines with nine kinds of bend diameter ratio and the inner diameters of 8mm were used on condition of seven kinds of Reynolds numbers. The pressure and velocity distributions were obtained, the empirical equation of local resistance coefficient from numerical experiments was conducted, providing the interrelations between the best bend diameter ratio and flow velocity in engineering design. The results indicate that the pressure and velocity distributions were non-linear, and which become tremendous with increasing Reynolds numbers. The results suggest that the dot of maximum velocity occurs the wall outside of a pipe bend, and which is more near to the wall outside of a pipe bend along the flowing direction and increasing the velocity. The phenomena of particle sedimentation should be took into account to investigate the flowing behavior of gel propellant in curved pipes on condition of lower Reynolds numbers.
2274
Showing 1 to 2 of 2 Paper Titles