Papers by Author: Yi Jun Cai

Paper TitlePage

Authors: Lu Yue Xia, Hai Tian Pan, Meng Fei Zhou, Yi Jun Cai, Xiao Fang Sun
Abstract: Melt index is the most important parameter in determining the polypropylene grade. Since the lack of proper on-line instruments, its measurement interval and delay are both very long. This makes the quality control quite difficult. A modeling approach based on stacked neural networks is proposed to estimation the polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural networks model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual networks using the criteria about minimization of sum of absolute prediction error is proposed. Application to real industrial data demonstrates that the polypropylene melt index can be successfully estimated using stacked neural networks. The results obtained demonstrate significant improvements in model accuracy, as a result of using stacked neural networks model, compared to using single neural network model.
411
Authors: Lu Yue Xia, Hai Tian Pan, Meng Fei Zhou, Yi Jun Cai, Xiao Fang Sun
Abstract: A modeling methodology based on stacked neural networks by combining several individual networks in parallel is proposed. Stacked neural network as an effective method for modeling of inherently complex and nonlinear systems especially a system with a limited number of experimental data points is chosen for yield prediction. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual networks using robust least squares estimation is proposed. Inferential prediction of melt index as the most important characteristic process of polypropylene polymerization has been carried out. The application of the proposed modeling method based on stacked neural networks to the development of melt index soft sensor in an industrial propylene polymerization plant demonstrates its effectiveness.
670
Showing 1 to 2 of 2 Paper Titles