Table of Contents

n		4	•		
ν	r	Ω1	า	c	0

Table of Contents

1. Significance of Studying Molten State in Metallurgy/Ggeometry/Ceramics			
1.1. Why it Is Important to Interconnect Micro Structure with Relevant Macroscopic Properties	1		
1.2. Two Aspects of the Studying Approach. Ref.1.			
2. Development of High Temperature Raman Spectroscopy in Shanghai University			
2.1. Selection of Experiment Method in Studying Micro Structure of Molten Silicate	6		
2.2. Summary of Raman Spectroscopy	8		
2.3. Characteristics of Diverse High Temperature Raman Spectroscopy (HTRS)	13		
2.4. The First Set of HTRS Developed in Shanghai University (SU-HTRS)	19		
2.5. The Second Set of HTRS Developed in Shanghai University, SU-HTRS(T/S)	36		
Ref. 2	45		
3. Micro Structure of Diverse Hierarchy in Silicates and Aluminates			
3.1. Micro Structure of Silicates in Phenomenology	49		
3.2. Elementary Micro Structure of Silicates	50		
3.3. Second and Multi Order Micro Structure of Silicates	61		
3.4. Discrepancy of Micro Structure between Silicate Melt and Silicate Glass	66		
3.5. Coordination Bond of Al in Ai-O Tetrahedron, and the Oxygen with Three Bonds	67		
3.6. Al-O Tetrahedra in Aluminates	74		
Ref. 3	76		
4. SiOT Model Used to Calculate the Raman Spectroscopy of Molten Silicates			
4.1. Survey of the Theoretical Description of HTRS of Molten Silicate	79		
4.2. Gist of the Model	81		
4.3. Application of SiOt Model	120		
4.4. Characteristics and Function of SiOt Model	141		
Ref.4	142		
5. Interconnection of Micro Structure and Thermodynamic Properties			
5.1. CEMS Model	145		
5.2. Self-Consistent Calcuation of CEMS Model	157		
5.3. A Discussion on the Reliability of CEMS Model	160		
5.4. Calculation of Thermodynamic Properties	163		
5.5. Characteristics and Function of CEMS Model	165		
Ref. 5	166		

6. Ab Initio Calculation of Raman Spectra of Silicate

6.1. A Brief Introduction of <i>Ab Initio</i> calculation	168
6.2. Use of Gaussian 98 Software in Raman Spectrum Calculation	170
6.3. Raman Spectra of Na ₂ O-SiO ₂ System Crystals Calculated with G98 Software	176
6.4. Prediction of Micro Structure in Glass and Melt According to the Result for Crystal	178
6.5. Error and Applicable Limit of <i>Ab Initio</i> Calculation	181
Ref. 6.	184
7. Raman Spectra of some Inorganic Glasses and Compounds	
7.1. Influence of Composition on Raman Spectra of Silicate Glasses	187
7.2. Raman Spectra of some Aluminosilicate Minerals	189
7.3. Raman Spectra of Binary Na ₂ O-P ₂ O ₅ System	194
7.4. Raman Spectra of Borate	199
7.5. Summary of the Study on Phase Transformation by Means of HTRS. 7.6. Raman Spectra of TiO ₂ and Nano-PbTiO ₃	206
7.7. Solid-Liquid Boundary during the Growing Process of TeO ₂ Crystal	210
Ref.7	211
8. Ion Cluster Theory in Thermodynamicsthe High Order Subregular Model of Melt	
8.1. SReM Model	214
8.2. Relationships between the Parameters in Quaternary and Quinary System	217
8.3. Parameter Fitting Procedures in the SReM Model	219
8.4. Conversion of Parameters of SReM Model to Parameters of other Models	230
8.5. Application of SReM Model in Activity Calculation	235
8.6. Engineering Application of SReM Model	250
8.7. Characteristics of SReM Model	267
Ref. 8	268

Further Remark