Advanced Techniques for Materials Characterization

Table of Contents

Preface

Dr. A.K. Tyagi	
Dr. Mainak Roy	
Dr. S.K. Kulshreshtha	
Dr. S. Banerjee	
1. Diffraction Techniques	
1.1 Characterization of Crystalline Materials with Powder X-Ray Diffraction (XRD)	1
1.2 Study of Nuclear (Chemical) and Magnetic Structures Using Neutron Scattering	43
1.3 Use of SANS and SAXS in Studying Nanoparticles	83
2. Spectroscopic Techniques	
2.1 IR Spectroscopy: Applications in Material Characterization	97
2.1 R Spectroscopy: Applications in Material Characterization 2.2 Raman Spectroscopic Technique for Materials Characterization	121
• •	121
2.3 Structural Aspects of Zeolites and Oxide Glasses: Insights from Solid State Nuclear Magnetic Resonance	149
2.4 Electron Paramagnetic Resonance (EPR) Spectroscopy in Material Characterization	193
2.5 Positron Annihilation Spectroscopy	213
2.6 Mössbauer Spectroscopy and its Applications	227
3 Compositional Characterization Techniques	
3. Compositional Characterization Techniques	271
3.1 Mass Spectrometry for Characterization of Materials 3.2 Neutron Activation Analysis and Applications	271
* **	211
3.3 Atomic Absorption, Emission and Mass Quantification in the Elemental Characterization of Materials	301
3.4 Microanalysis by Electron Beam	339
3.5 Compositional Characterization of Surfaces with Ion Beam Analysis	363
4. Synchroton and Surface Techniques	
4.1 Synchrotron Radiation and its Application for Material Characterization	381
4.2 Materials Characterization Using Surface Analytical Techniques: X-ray Photoelectron	361
Spectroscopy	389
5. Microscopic Techniques	
5.1 Atomic Force Microscope (AFM) in Chemistry, Biology and Material Science	415
5.2 Particle Characterization by Light Scattering	433
5.3 Characterization of Nanostructures by Transmission Electron Microscopy	475
5.4 Principles and Applications of SEM and EDAX	495