Table of Contents #### Preface #### **Chapter 1: Biomass Pre-Treatment Technologies** | Torrefaction of Empty Fruit Bunch as Fibrous Biomass Pre-Treatment E. Laksmi Nugraha and R. Hantoro | 3 | |--|-----| | Upgrading Bagasse Quality by Torrefaction for a Biomass Power Plant S. Sirijuncheun, V. Seithtanabutara and T. Wongwuttanasatian | 8 | | Experimental Investigation of the Performance of a Spouted Bed Dryer for Biomass: Drying Kinetics and Energy Evaluation | 1.7 | | B.R.S. Silva, M. Nascimento, L.G. Marques and M.M. Prado Effect of Electron Beam Irradiation and Ionic Liquid Combined Pretreatment Method on | 15 | | Various Lignocellulosic Biomass N.A.A. Jusri, A. Azizan, Z.S.Z. Zain and A.M.F. Rahman | 25 | | Combining Wet Rendering with Torrefaction to Improve the Fuel Characteristics of | | | Biochar from Food Waste R.A. Rasid, T.X. Yee, R.N.U.A. Rahman and M. Ismail | 33 | | Chapter 2: Biomass Pyrolysis | | | Bio-Oil Characterizations of <i>Spirulina Platensis</i> Residue (SPR) Pyrolysis Products for Renewable Energy Development | | | S. Jamilatun, A. Rahayu, Y.S. Pradana, B. Budhijanto, Rochmadi and A. Budiman | 45 | | Influence of Natural and H-Beta Zeolites on Yield and Composition of Non-Polar Fraction of Bio-Oil in Slow Co-Pyrolysis of Biomass and Polypropylene D. Supramono and S. Tiaradiba | 51 | | Utilization of <i>Casuarina montana</i> Pruning Waste Biomass as Chemical or Energy Resources D. Irawati, D. Usman and N.N. Pradipta | 57 | | Catalytic Intermediate Pyrolysis of Cellulose for Hydrocarbons Production in the Presence of Zeolites by Using TGA-FTIR Method K. Lazdovica and V. Kampars | 64 | | Effect of Acidic Activated Natural Zeolite on Characteristics of Bio Oil Derived from Pinus Merkusii's Cone Pyrolysis A. Zulkania, A. Chafidz, P. Maharani and S. Ade Putri | 70 | | In Situ Pyrolysis of Pine Flowers to Produce Bio-Oil: Effect of Temperature and Catalyst | 70 | | Treatment A. Zulkania, N.Z. Yasha, S.A. Rachman and A. Chafidz | 75 | | Pyrolysis of Sugarcane Bagasse: The Effects of Process Parameters on the Product Yields A.G.H. Saif, S.S. Wahid and M.R.O. Ali | 80 | | An Investigation on the Interaction between Biomass and Coal during their Co-Pyrolysis E.E. Samy Berthold, S.L. Fang, Y.T. Xue, Y. Wang, Z. Xiong, J.H. Guo, S. Hu, J. Xiang and S. Su | 89 | | Aspen Plus Simulation of Bio-Char Production from a Biomass-Based Slow Pyrolysis | | | Process Y.A. Dahawi, A. Abdulrazik, M.N.A. Seman, M.A.A. Aziz and M.Y.M. Yunus | 99 | | Thermo Distillation and Characterization of Bio Oil from Fast Pyrolysis of Palm Kernel Shell (PKS) | | | D. Qarizada, E. Mohammadian, A.B. Alis, S.M. Yusuf, A. Dollah, H.A. Rahimi, A.S. Nazari and M. Azizi | 105 | | Catalytic Cracking of Oleic Acid over Zeolites M.A.A. Kanak, J.Y. Park and I.G. Lee | 111 | ### **Chapter 3: Biomass Gasification** | Utilization of Tea Tree Branches as a Source of Thermal Energy
R. Firyanto, H. Susanto, R.S.L. Ambarwati, Suherman and Widayat | 119 | |---|------| | Gasification of Oil Palm Shells and Empty Fruit Bunches to Produce Gas Fuel A. Aktawan, Maryudi, S. Salamah and E. Astuti | 125 | | Potential Application of Sago Pulp Briquette for Electricity Generation Using Gasification Technology in Papua Province, Indonesia M. Syamsiro, M.N. Aridito and S. Ma'arif | 130 | | Chapter 4: Biomass Liquefaction | | | Production of Bio-Crude Oil from Microalgae <i>Chlorella</i> sp. Using Hydrothermal
Liquefaction Process | | | A.A. Bawono, H. Adhisatrio, L. Prasakti and Y.S. Pradana | 139 | | Chapter 5: Biodiesel Synthesis | | | Reusability of the Deep Eutectic Solvent - Novozym 435® Enzymes System in Transesterification from Degumming Palm Oil | 1.45 | | R. Manurung and A.G.A. Siregar Evaluation of Catalysts Mordenite and MoO ₃ /Mordenite in the Production of Biodiesel | 147 | | F.M. do Nascimento Silva, E.G. Lima, T.L. de Almeida Barbosa and M.G.F. Rodrigues | 156 | | Characterization and Application of Catalysts Hard Green Clay and MoO ₃ / Hard Green Clay in Transesterification Reaction of Soybean Oil | | | F.M. do Nascimento Silva, E.G. Lima, T.L. de Almeida Barbosa and M.G.F. Rodrigues | 162 | | Chrom/Nanocomposite ZrO ₂ - Pillared Bentonite Catalyst for Castor Oil (<i>Ricinus communis</i>) Hydrocracking | | | K. Wijaya, A. Syoufian, A. Fitroturokhmah, W. Trisunaryanti, D. Adi Saputra and Hasanudin | 168 | | Optimization of Biodiesel Production from Used Cooking Oil: Aspen HYSYS Simulation and Experimental Validation A. Giwa and K.S. Umanah | 175 | | Gas Chromatography and Fourier Transform Infrared Analysis of Biodiesel from Used and | 173 | | Unused Palm Ölein Öil | 107 | | I.A. Daniyan, E.I. Bello, T.I. Ogedengbe and P.B. Mogaji Kinetic Study of Catalytic Hydrocracking Ceiba Pentandra Oil to Liquid Fuels over Nickel- | 186 | | Molybdenum/HZSM-5 | 20.4 | | Y.W. Mirzayanti, D.H. Prajitno, A. Roesyadi and E. Febriyanti Lipase Acrylic Resin Catalyzed Interesterification of Sewage Sludge in Micro Packed Bed | 204 | | Reactor: Box-Behnken Design | | | A. Jazie, R.I. Jaddan, M.F. Al-Dawody and S.A. Abed | 213 | | Rapeseed Oil Interesterification Reaction with Metylacetate in the Presence of BuOK/BuOH at Different Temperatures V. Kampars, R. Gravins and K. Lazdovica | 229 | | Analysis of Products Obtained in Chemical Interesterification of Rapeseed Oil with Methyl Formate | | | L. Laipniece, Z. Abelniece and V. Kampars | 234 | | Turritella terebra Shell Synthesized Calcium Oxide Catalyst for Biodiesel Production from Chicken Fat | 220 | | M.N. Mohiddin, A.S. Ahmed, A.N.R. Reddy and S. Hamdan Enhanced Biodiesel and Ethyl Levulinate Production from Rice Bran through Non | 239 | | Catalytic In Situ Transesterification under Subcritical Water Ethanol Mixture S. Zullaikah, S. Utami, R.P. Herminanto and M. Rachimoellah | 248 | | Biodiesel Synthesis from Used Cooking Oil Using Red Mud as Heterogeneous Catalyst A. Hidayat, G.K. Rozig, F. Muhammad, W. Kurniawan and H. Hinode | 254 | | Biofuel Production from Jatropha Bio-Oil Derived Fast Pyrolysis: Effect of Catalysts | | |--|------| | Supported T. Rodseanglung, T. Ratana, M. Phongaksorn and S. Tungkamani | 260 | | The Use of Super Base CaO from Eggshells as a Catalyst in the Process of Biodiesel Production | | | Y. Pasae, L. Bulo, K. Tikupadang and T.T. Seno | 265 | | The Production of Biodiesel from Waste Cooking Oil (Simultaneous Esterification and Transesterification Using Fe/Zeolite Catalysts from Waste Geothermal) N.L. Muna, A.A. Mu'alimah, D.B. Pridiana, A.K. Widodo, S.R. Adiyar and E.H. Elinda | 270 | | Synthesis of CaO@CoFe ₂ O ₄ Nanoparticles and its Application as a Catalyst for Biodiesel | 270 | | Production from Used Cooking Oil T.R. Primadi, F. Fajaroh, A. Santoso, Nazriati and E. Ciptawati | 277 | | Synthesis of Methyl Ester from Rice Bran Oil through the Esterification Reaction A. Santoso, Abdurrohman, A.R. Wijaya, D. Sukarianingsih, Sumari and D.E. Putri | 287 | | Study of the Feasibility of Biodiesel Production, from Vegetable Oils and Catalysts of Seafood Residues, in a Batch Hydrogenation Reaction Unit, Assisted by Microwave and Conventional Heating | 20.5 | | S.G. de Araújo, L. Landini, V.L.R. Salvador, M.A. Scapin, B.F. Massanares and A.B. Urbaninho Utilization of Modified Coal Fly Ash (CFA) as a Catalyst for Production of Biodiesel from Coconut Oil: Part 1 - Characteristics of the Catalyst | 295 | | A. Hidayat, A. Chafidz and B. Sutrisno | 301 | | CaO/Natural Dolomite as a Heterogeneous Catalyst for Biodiesel Production B. Sutrisno, A.D. Nafiah, I.S. Fauziah, W. Kurniawan, H. Hinode and A. Hidayat | 307 | | The Synthesis of Polyethersulfone (PES) Derivatives for the Immobilization of Lipase | | | Enzyme N. Rahmahwati, D. Wahyuningrum and A. Alni | 313 | | Utilization of Silica from Indonesian Solid Wastes as Catalyst Materials F. Kurniawansyah, A.D. Istiqomah, A.J. Malahayati, H.T.B.M. Petrus and A. Roesyadi | 321 | | Transesterification of Kapok Seed Oil (<i>Ceiba pentandra</i>) Using Heterogeneous Catalyst Bimetallic Oxide of Zinc and Copper Supported by γ-Alumina N.P. Asri, W.D. Prasetiyo, A. Kafidhu, A. Atiqoh, E.A. Puspitasari, H. Hindarso and S. Suprapto | 327 | | Transesterification Catalytic Performance of Mechanically Alloyed Eggshell Ash, | 321 | | Magnesium and Aluminum Oxides for Sustainable Biodiesel Production O.S. Okwundu, A.H. El-Shazly, M.F. El-Kady and M.A. Shouman | 335 | | Study of the Use of Mamasa Natural Zeolite which is Activated by Acid as a Catalyst for Cracking Palm Oil Methyl Esters S.S. Rosalia, L.H. Wilhelmus, Denny, H.S. Nunuk and T. Paulina | 340 | | Preparation of Monometallic Catalysts on Carbon Support for Synthesis of Biodiesel Fuel T. Longprang, P. Udomsap, N. Chollacoop, M. Fuji and A. Eiad-Ua | 346 | | Impact of Pulsed Electric Field on Glycerin Sedimentation from Biodiesel Production | | | Process T. Hinthao, T. Wongwuttanasatian and A. Suksri | 352 | | Chapter 6: Bioethanol Synthesis | | | Effect of Simultaneous Saccharification and Fermentation (SSF) Time on Ethanol Production from Spent Medium of Oyster Mushroom (<i>Pleurotus ostreatus</i>) | | | D. Irawati, N.N. Pradipta and M.A. Umar | 359 | | A Novel Immobilization Method of <i>Saccharomyces cerevisiae</i> on Fermentation of Nipa Palm Sap for Fuel Grade Bioethanol Production Chairul, Evelyn, S. Bahri and E. Awaltanova | 367 | | Alternative Energy from Fresh Water Weed, Hydrilla verticillata | 201 | | S. Sawekwiharee and N. Albutt | 372 | | Production of Bio-Ethanol via Hydrolysis and Fermentation Using Cassava Peel and Used Newspaper as Raw Materials T. Mutiara, S. Widiawati, S. Rachmatyah and A. Chafidz | 377 | | The Effect of Mixed Culture of Zymomonas mobilis and Pichia stipitis in Ethanol Production | | | of Sugar Palm (<i>Arenga pinnata</i>) A.S. Dewi, R.A. Stevanus, M.A. Sandra, D.F. Nury, L. Pudjiastuti and T. Widjaja | 383 | ## **Chapter 7: Biogas Synthesis** | Enhancement of Biogas Production in Anaerobic Digestion from Sludge of Dairy Waste with Fixed Bed Reactor by Using Natural Zeolite H. Pampang, C.W. Purnomo and R.B. Cahyono | 391 | |---|-----| | Bioconversion of Dried Leaves from Algerian Date Palm (<i>Phoenix dactylifera</i> L.) to Biogas by Anaerobic Digestion | | | M. Djaafri, S. Kalloum, A.E. Soulimani and M. Khelafi | 398 | | Hydrogen Sulfide Separation from Biogas Using Laterite Soil Adsorbent S. Adisasmito, C.B. Rasrendra, M.Q. Alfadhli and M.F. Al Ghifary | 412 | | Hydrogen Sulfide Removal by Iron Oxide-Based Clay from Biogas for Community Use C. Mingchai, S. Sakunphun, S. Palas and S. Samposree | 419 | | Evaluation of Biogas Production from Bio-Digestion of Organic Wastes O.J. Odejobi, O.A. Olawuni, S.O. Dahunsi and A.A. John | 426 | | Performance of Activated Carbon Made from Gigantochloa verticillata Bamboo for Biogas | | | Purification I.P.H. Wangsa, T.G.T. Nindhia, D.N.K.P. Negara and I.W. Surata | 437 | | Chapter 8: By-Product Processing Technologies | | | Triacetin Synthesis as Bio-Additive from Glycerol Using Homogeneous and Heterogeneous Catalysts | | | Z. Mufrodi, E. Astuti, M. Syamsiro, Sutiman and S. Purwono | 445 | | Synthesis of Zeolite Catalyst from Geothermal Solid Waste for Crude Glycerol Dehydration to Acrolein | 451 | | Widayat, J. Philia, T. Farsha and F. Rifaldi Triacetin Production by Selective Esterification of Glycerol over Activated Zeolite and | 431 | | Lewatite as Catalyst L. Setyaningsih, I.A. Ali, A. Chafidz, S. Septiyan and P.A. Eka | 458 | | Esterification of Glycerol with Acetic Acid in Bioadditive Triacetin with Fe ₂ O ₃ /Activated Carbon Catalyst Z. Mufrodi and S. Amelia | 464 | | Chapter 9: Analysis of the Exploitative Efficiency of Biofuel | | | Feasibility of Studying Fuel Mixer Design for High Power Engines Using Completely Biogas T.P. Tran, Q.M. Nguyen and Q.C. Tran | 471 | | A Study on Bio-Diesel and Jet Fuel Blending for the Production of Renewable Aviation Fuel R.M. El-Maghraby | 484 | | Study of Performance, Combustion and Emission Characteristics of DI Diesel Engine
Fuelled with Neem Biodiesel with Carbon Nano Tube as Additive
D.K. Ramesha, H.N. Vidyasagar, G. Trilok, A. Lakshmi Prasad and V. Vinay Kumar Reddy | 498 | | Effect of Titanium Dioxide (Tio ₂) Nano-Fluid on Performance and Emission Features of a Diesel Engine Operated on Aphanizomenon Flos Biodiesel-Diesel Blend G. Jayabalaji and P. Shanmughasundaram | 505 | | Combustion Characteristics of Single Cylinder Diesel Engine Fueled with Blends of Thumba Biodiesel as an Alternative Fuel | | | M. Singh, M.Y. Sheikh, D. Singh and P.N. Rao The Explosion Severity of Biogas(CH ₄ -CO ₂)/Air Mixtures in a Closed Vessel N.A.M.H. Khan, S.Z. Sulaiman, I. Izhab, S.K.A. Mudalip, R. Che Man, S. Md Shaarani, Z.I. | 511 | | Mohd Arshad, R.M. Kasmani and S. Sulaiman | 521 | | Experimental Studies of Biogas in a Single Cylinder Diesel Engine by Dual Fuel Mode of Operation | | | C. Jagadish and G. Veershetty | 528 | | Performance of a Diesel Engine Fuelled with Nanoparticle Blended Biodiesel S. Kanth, S. Debbarma and B. Das | 534 | | Experimental Study of Ignition and Combustion Characteristics of Mixed Rice Straw and Sewage Sludge Solid and Hollow Spherical Pellets in a Plasma Combustion System M.E. Mostafa, H. Tang, J. Xu, H.Y. Chi, K. Xu, S. Su, S. Hu, Y. Wang, S.A. El-Sayed and J. | | |---|-----| | Xiang | 540 | | Performance Analysis of Pongamia Biodiesel as an Alternative Fuel for CI Engine A. Anand, B.S. Nithyananda and G.V. Naveen Prakash | 549 | | The Effect of Biodiesel Composition on Characteristics of Blended Summer Diesel Fuel V. Kampars, R. Kampare and A. Naumova | 554 | | Chapter 10: Compatibility of Biofuel and Exploitative Equipment | | | Study of Corrosion of AA 3003 Aluminum in Biodiesel, Diesel, Ethanol and Gasoline Media M. Soares, L.O. Berbel, C. Vieira, D.C.S. Oliszeski, C.B. Furstenberger and E.d.P. Banczek | 561 | | Study on the Effect of Si-Al Components in Pulverized Coal Ash on Corrosion in Heating Surface of Biomass Boiler Y.G. Li, Y.Z. Wang, W.B. Zhu and Y. Sun | 566 | | Effect of Additives on Ash Corrosion on Heat Exchanging Surface of Biomass Boilers Y. Sun, Y.Z. Wang, K. Zhang and Y.G. Li | 572 | | Dynamic Matrix Control of a Reactive Distillation Process for Biodiesel Production A. Giwa, J.O. Owolabi and S.O. Giwa | 579 | | Continuous Methyl Ester Production Process from Refined Palm Oil Using 3D-Printed Static Mixers K. Pongraktham and K. Somnuk | 595 | | Compatibility of Palm Biodiesel Blends on the Existing Elastomer Fuel Hose in Diesel Engine with Approach of Dynamic Test Rig: A Concept Study | 601 | | N. Ša'at, A. Samsuri, N.A. Latif, N.F. Nasir, R.H. Madon and S.A. Osman | 601 | | Chapter 11: Engineering Management of Biofuel Production | | | A Lifecycle Sustainability Assessment of CO ₂ Emissions, Energy Consumption and Social Aspects of Methylic and Ethylic Biodiesel Using Principal Component Analysis S.F. Interlenghi, J.L. de Medeiros and O.d.Q.F. Araújo | 609 | | Water and Power Consumption, Ethanol Production and CO ₂ Emissions: High-Scale Sugarcane-Based Biorefinery Toward Neutrality in Carbon R.d.F. Dias, H.B. Carminati, O.d.Q.F. Araújo and J.L. de Medeiros | 621 | | Hybrid Approach for Optimizing Process Parameters in Biodiesel Production from Palm
Oil | | | P. Luangpaiboon and P. Aungkulanon Promote for the Development of Cross Coccline and Cross Disselfrom Crude Polm Oil in | 630 | | Prospects for the Development of Green Gasoline and Green Diesel from Crude Palm Oil in Indonesia | | | A. Sugiyono, I. Fitriana, A.H. Budiman and A. Nurrohim | 638 |