DESIGN AGAINST FRACTURE AND FAILURE

Table of Contents

P	r	ef	a	c	e	

About the Authors

Table of Contents

Part 1: Design and Fracture Mechanics

Chapter 1: Introduction. 1.1 Failure and Engineering Disasters?

1.2 What Are the Causes of Engineering Disasters?	2
1.3 Why Design against Failure Is Important!	3
1.4 Some Historical Engineering Failures and their Causes	4
Summary	8
Additional information. Questions	9
Chapter 2: Strength and Safety in Design	
2.1 How Strength of a Material Is Related to Response to Fracture and Failure	12
2.2 What is <i>Safe-Design</i> ? and What is its Role in Manufacturing? 2.3 What Approach Should Be Adopted in Designing a Machine Element?	15
2.4 What Is Engineering Risk; and how Is it Assessed?	17
2.5 What is the Importance of Safety Factor (FoS) in Design?	18
2.6 Approach to Be Adopted for Designing against Metallurgical Failures	21
2.7 How are Failure Theories Helpful in Predicting Failures?	23
Summary	25
Additional Information	26
Questions and Problems	27
Chapter 3: Elements of Fracture Mechanics	
3.1 What are the Causes of Failures in Solids and Structures?	29
3.2 What is the Importance of Stress Concentration Factor (s.c.f)?	30
3.3 How Griffith Crack Theory is Helpful in Predicting Fracture Behaviour	35
3.4 How Can we Analyze Cracks?	38
3.5 How Can we Distinguish among K , K_c and K_{ic} ?	41
3.6. Generalized K Expression with Geometric Compliance Function, Y	43
Summary	45
Additional Information. Questions and Problems	46
Chapter 4: The Design against Fracture: Philosophy and Practices	
4.1 How Can we Design Materials and Systems against Growth of a Crack?	49
4.2 How Can we Design a Thin-Walled Pressure Vessel against Fracture?	51
4.3 How Can we Decide Whether or Not a Design Is Safe to Use?	55
4.4 How Can we Apply Design Philosophy for Materials Selection, Design of a Component and Test Method?	59
4.5 What is the Role of ndt in Design against Fracture?	62
4.6 What is Damage Tolerance Design Methodology (DTDM)?	63
Summary	64
Summar y	04

Questions and Problems	65
Part 2: Fracture and Failure Mechanisms	
Chapter 5: Fracture Mechanisms in Metals	
5.1 Ductile and Brittle Fracture	68
5.2 Macroscopic and Microscopic Features of Fracture Mechanisms	72
5.3 How are Microscopic Examinations Helpful in Identifying Fracture?	75
5.3.1 Intergranular Brittle Fracture Mechanism	76
5.3.2 Transgranular Fracture Mechanism	80
Summary	82
Additional Information	83
Questions and Problems	84
Chapter 6: Failure Mechanisms in Composite Materials	
6.1 What is a Composite Material?	87
6.2 The Effective Properties of Composite Materials	88
6.3 Failure Mechanisms in Composite Structures	93
6.4 Case Study: Failure Modes and Energy Absorption of Crushing Behavior in Composite Material	103
Summary, Additional Information	105
Questions and Problems	106
Chapter 7: Metallurgical Failures. 7.1 How Temperature Drop Results in Ductile-Brittle Transition Failure	
7.2 How Cyclic Loading May Lead to Fatigue Failure	108
7.3 How Temperature and Time Increase May Lead to Creep Failure	112
7.4 How Corrosive Environment May Lead to Failure by Environmentally Assisted	
Cracking (EAC)	117
7.5 How Surface Conditions May Lead to Failure by Wear and Erosion	120
Summary	122
Additional Information. Questions and Problems	123
Part 3: Failure Analysis and Prevention	
Chapter 8: General Practices in Failure Analysis. 8.1 What is Failure Analysis? 8.2 What is Root Cause Failure Analysis (RCFA)?	
8.3 Stages and Procedures in Failure Analysis	126
8.4 Equipment and Techniques in Failure Analysis	129
8.5 Case Studies in Failure Analysis	137
Summary	142
Additional Information	143
Questions and Problems	144

Chapter 9: Role of Electron Fractography in Failure Analysis

9.2 The Practical Use of Scanning Electron Microscopy (SEM) in Electron Fractography9.3 Macro-and micro-fractography in the sem9.4 Case Study in Failure Analysis Involving Electron Fractography	147 151 155 157 158
	155 157
9.4 Case Study in Failure Analysis Involving Electron Fractography	157
Summary	158
Questions and Problems	
Chapter 10: Design against Fatigue and Ductile Failures	
10.1 How Can we Design Materials against Ductile Failure?	160
10.2 Designs against Fatigue Failure	164
10.3 How Fatigue Life Can Be Improved by Introducing Residual Compressive Stresses?	173
10.4 How Can we Compute Fatigue Life and Attain Fail –Dafe Design?	177
Summary	179
Additional Information	180
Questions and Problems	181
Chapter 11: Design against Failures Caused by Temperature & Environment	
11.1 Design against Ductile-Brittle Transition (DBT) Failure	183
11.2 Design against Creep Failure	184
11.3 Design against Environmental Assisted Cracking (EAC)/Corrosion	192
11.4 Design against Wear	204
Summary	205
Additional Information. Questions and Problems.	206

Answers to Problems