Engineering Materials 200

Table of Contents

Editors	3
Preface	4
Mechanical Anisotropy and Structure in OrientedPolymers and Composites	5
Crystallization and Oxidation of Heat TreatedFerromagnetic Fe-based Metallic Glasses	21
The Processing, Properties, and Applications of Y-Ba-Cu-O Superconductors	30
Significance of Microstructure in Transformation Toughening Zirconia Ceramics	43
Behaviour of Particle Assemblies-Relevance to Ceramic Processing	61
Molecular Criteria of Craze Initiation and Growth	71
Development of Fine Ceramic Fibres for High Temperature Composites	78
The Mechanical Behaviour of Shock Mitigating Foams	85
Mechanisms of Inelastic Deformation of Solids	91
Grain Refinement and Subsequent Deformation Behaviour of α-Brass	111
Deformation Mechanism Maps for Poly(methyl methacrylate) and Polycarbonate	117
Models for Creep of Fibrous Composite Materials	133
Microstructural Aspects of Strengthening and Toughening of Metals, Crystalline Metallic Alloys and Semicrystalline Polymers	140
Structural Aspects of Alloy Carbonitride Precipitation in Microalloyed Steels	166
Stress-Activated Martensitic Transformation and Transformation Plasticity	182
Silicon Carbide Whisker Reinforced and Zirconia Transformation Toughened Ceramics	194
Transformation Toughened Non-Oxide Zirconia Composite Ceramics	202
Screw Dislocation Model for Yield in Polyethylene	210
Development and Potential of Advanced Fibre Composites for Aerospace Applications	217
Fracture Resistance and Fracture Mechanisms of Engineering Materials	232
Ductile and Brittle Crack Growth: Fractography, Mechanisms and Criteria	268
The Potential for Grain Boundary Design in Materials Development	284
The Influence of Residual Stress on the Toughness of Reinforced Brittle Materials	304
Surface Forces and Fracture in Brittle Materials	313
Small Angle X-Ray Scattering Studies of the Mechanisms of Failure in Polystyrene	323
The Micromechanics of Composite Fracture	332
Modelling Crack Growth in Fibre-Reinforced Cementitious Materials	341
Two Hundred Vears of Metals in Australia	352