Table of Contents

Preface

Chapter 1: Welding Technologies

Process Parameter Optimization of Aerospace-Grade Dissimilar Aluminium Alloy 7075 and 2014 by Friction Stir Welding K. Sekar and P. Vasanthakumar	3
Correlation between Microstructure and Bending of FSW and TIG Welded Mg-Rich Aluminium Alloy Joints V. Msomi and S. Mabuwa	15
Hardness and Microstructure Analysis of Rotary Friction Welded Dissimilar Joint of Cu and Ti-6Al-4V	
R. Chaudhari, O. Pardeshi, D. Chandak, T. Barawkar, H. Ovhal and G. Dhanpalwar	23
Experimental Investigation of Friction Stir Welding on Al 2024-T3 and Al 7075-T6 Alloy G. Mishra, A. Mistri, R.K. Tarafdar, S. Kumar and S. Chattopadhyaya	35
Chapter 2: Green Building Materials	
Tangential Adhesive Strength of the Masonry with PET-Fibres Modified Mortar D. Cajamarca-Zuniga, C. Cordero, D. Campos, C.J. Calle, D. Andrade and W. Morocho	47
Experimental Analysis of High-Strength Concrete Using Granite Aggregates B.L.S. Karthik, A. Mahajan and S. Jaggi	55
Mining Waste Utilization as a Sound Absorbing Material M.R. Das, S. Satapathy and L.K. Pothal	67
Experimental Investigation on Strength Characteristics of Concrete by Partial Replacement of Cement with Sodium Silicate	
S.K. Munipally, A. Prakash and S. Kapilan	77
Assessment of Strength and Durability Parameters of Geopolymer Concrete Blocks with Different Sand Replacement Levels V.K. C., P.S.C. Babu, M.S.M. Anas, V.N.K. Varma and C. Hemalatha	85
Performance of Strength and Modulii Characteristics of Ceramic Waste Aggregate	0.5
Concrete (CWAC) V. Giridhar and M. Sreenath	95
Experimental Studies on Concrete Using the Partial Replacement of Cement by Red Mud M. Goutham Priya, E. Sudharsan and K. Tamizharasan	107
Experimental Studies on Self-Compacting Alkali Activated Slag Concrete Mixes Incorporating Reclaimed Asphalt Pavement as Fine Aggregate	
A. Joy, R. Manjunath, S.N. Neha and M.H. Prashanth	113
An Innovative Study on Utilisation of Pareva Dust and Quartz Sand in Concrete S. Mathew and H.K. Sain	135
Chapter 3: Tools and Equipment for Production	
On-Machine CIS SoC-Based Layerwise Inspection System for MEX Additive	
Manufacturing A. Fernández, P. Fernández, F. Peña and D. Blanco	143
Characterisation of the Performance of a Structured Light Digitising Sensor by Using Different Materials and Surface Finishes P. Zapico García, E. Cuesta, V. Meana, G. Suárez, S. Mateos and P. Rodríguez González	151
Parametric Design of a Structural Plate for a Microsatellite A.M. Amores, E.M. Andrés-Lopez and A. Sanz-Lobera	161

Chapter 4: Environmental Sustainability of Production

Theoretical Model for Carbon Footprint Calculus Based on Energy Consumption for	
Polymer Additively Manufactured Parts	
M.Ě. Hernandez Korner, M.P. Lambán, J.A. Albajez, J.S. Mazo, L.d.C.N. Corrales and J. Royo	171
Implementation of Bacterial Cellulose in Production Plants for Waste Disposal	
C. Moreno-Díaz, P. Maresca, C. Barajas and P. Menéndez	181