Table of Contents

Preface

Chapter 1: Sustainability Aspects in Concrete Production

A Classification Review on Green Concrete J.N. Tzortzi and R. Hasbini	3
Concrete as a Sustainable Construction Material D. Benghida	14
High Performance Concrete for Environmentally Efficient Building Structures P. Hájek, C. Fiala and A. Lupíšek	19
Proposal of Eco-Efficiency Evaluation Method for Concrete Using Equivalent Durability on Carbonation	
T.H. Kim and C.U. Chae	32
Chapter 2: Cement Replacement	
Application of Waste Glass Powder as a Partial Cement Substitute towards more Sustainable Concrete Production	41
O.M. Olofinnade, J.M. Ndambuki, A.N. Ede and C. Booth Influence of Fly Ash and Basalt Fibers on Strength and Chloride Penetration Resistance of	41
Self-Consolidating Concrete O.A. Mohamed and W. Al Hawat	58
Validation of the Splitting Tensile Strength Formula for Concrete Containing Blast Furnace	30
Slag O.A. Mohamed, M. Ati and O.F. Najm	64
Durability of Sustainable Self-Consolidating Concrete O.A. Mohamed, W. Al Hawat and O.F. Najm	69
Experimental Validation of Splitting Tensile Strength of Self Consolidating Concrete O.A. Mohamed and O.F. Najm	74
The Correlation between Splitting Tensile Strength and Flexural Strength of Self Consolidating Concrete O.A. Mohamed, W. Al Hawat and M. Kewalramani	79
Strength Possibilities on Fly ash Based Interlock Pavers S. Kuckian and A. Dalvi	84
The Behavior of Fly Ash in Concrete Mixture O. Zobal, P. Padevět, Z. Bittnar, L. Kopecký and V. Šmilauer	92
Engineering Properties of Concrete with a Ternary Blend of Fly Ash, Wheat Straw Ash, and Maize Cob Ash	
N. Bheel, P.O. Awoyera and O.B. Olalusi	96
Suitability of <i>Cordia millenii</i> Ash Blended Cement in Concrete Production O.E. Babalola and P.O. Awoyera	109
Mechanical and Water Absorption Properties of Normal Strength Concrete (NSC) Containing Secondary Aluminum Dross (SAD)	
D.O. Nduka, A.N. Ede, O.M. Olofinnade and A.M. Ajao	118
Durability of Concrete with Fly Ash from the Dam Orlik after 55 Years O. Zobal, P. Reiterman, T. Plachy and Z. Bittnar	131
Evaluation of Compressive Strength of Sustainable Concrete Using Genetic Algorithm Assisted Artificial Neural Networks J.Y. Lim, T.W. Kim, X.Y. Wang and Y. Han	138
Rice Husk Ash as a Cement Replacement in High Strength Sustainable Concrete A. Ahmed, F. Hyndman, J. Kamau and H. Fitriani	144
Optimization of Sustainable Concrete Mixes Containing Binary and Ternary Blends R. Sabouni and H.R. Abdulhameed	153

Thermal Transmission Properties of Sustainable Concrete with Supplementary Cementitious Materials A. Khartabil and S.A. Martini	164
Sustainability Considerations of Concrete Mixes Incorporating Slag as Partial Replacement of Cement in Concrete in the UAE A. Al-Shaibani and R. Sabouni	172
Optimization of Concrete with High Volume of Fly Ash A. Hubáček, M. Labaj and M. Ťažký	179
Development of Geopolymer Mortar for Field Applications R.G. Reed, J. Daniels III and W.M. Hale	185
A Review Study on the Characterization of Geopolymer Concrete S.H. Said	189
Behaviour of Fly Ash and Rice Husk Ash Based Geopolymer Concrete S. Verma and M. Kumar	196
Setting Time and Compressive Strength of Mortar Containing Cockle Shell Powder as Partial Cement Replacement K. Muthusamy, R. Embong, N. Mohamad, N.S.H. Kamarul Bahrin and F.M. Yahaya	203
A Bibliographic Historical Analysis on Geopolymer as a Substitute for Portland Cement L.A. Alves, A. Nogueira, E. Vazquez and S. de Barros	209
Chapter 3: Aggregate Replacement	
Influence of Calcined Clay on the Strength Characteristics and Microstructure of Recycled Aggregate Concrete for Sustainable Construction O.M. Olofinnade and I.T. Oyawoye	217
Waste and Discharge Sand Use of Foundry for the Manufacture of Concrete Tiles A.V. dos Santos, M.C. Marchetti, A.R. de Souza, D.J.C. Silva, L.P. Godoy, V.A. Casarin and M.A.G. Marchetti	232
Recycled Polymer Concrete Composite: A Retrospective Review of the Literature and Framework for Thermal Comfort in Homes C.H. Ortega-Jimenez, E. Ardón, J. Pineda, C. Ventura, C. Núñez, D. Núñez and C. Romero	238
Compressive Strength Performance of Reactive Powder Concrete Using Different Types of Materials as a Partial Replacement of Fine Aggregate S.D. Mohammed, H.K. Awad and R.K. Aboud	245
Eco-Friendly and Cost-Effective Design of Concrete Pavement Using Used Foundry Sand and Tiles Dust	
B. Ahmed, S.M.Z. Islam, M.T. Hossen, H. Ahmed and M.R. Islam Cracking Tendency of Self-Compacting Concrete Containing Crumb Rubber as Fine	254
Aggregate K.H. Younis, H.S. Naji and K.B. Najim	263
Development of Functionally Graded Concrete Using Rubber Fiber S. Choudhary, A. Jain, S. Chaudhary and R. Gupta	269
Behavior of Concrete Containing of Fine Recycled Aggregate M. Šefflová, T. Pavlů and V. Hujer	280
The Comparison of Different Recycled Aggregate Types Properties M. Šefflová	286
Rheological Behavior of Self-Compacting Geopolymer Concrete Containing Recycled Aggregates: Effect of Na ₂ SiO ₃ /NaOH and Molarity of NAOH K. Salihi and K.H. Younis	292
Mechanical Behavior and Shrinkage of Algerian Very High Performance Concrete Using Local Materials D. Chiheb, M. Belaoura, M.N. Oudjit and A. Bali	298
Development of Green Cementitious Materials by Using the Abrasive Waterjet Garnet Wastes: Preliminary Studies	
C. Baeră, V. Vasile, C. Matei, A. Gruin, H. Szilagyi and I.A. Perianu Development of Light-Weight Concrete with Utilization of Foam Glass Based Aggregate	307
J. Zach, M. Sedlmajer, Z. Dufek and J. Bubenik	317

Rice Husk Ash as Fine Aggregate Sustainable Material for Strength Enhancement of Conventional and Self Compacting Concrete	
S.S. Samantaray, K.C. Panda and M. Mishra	323
Durability and Mechanical Properties of Self-Compacting Concrete Incorporating Recovered Filler from Hot Mix Asphalt Plants and Recycled Fine Aggregate S. Ghafari, F. Moghadas Nejad and O. Corbu	333
Effects of Rubber Particles on Rheological and Mechanical Properties of Concrete Containing CaCO ₃ Nanoparticles L. Wang and B.D. Zhao	340
Compressive Strength of Sustainable Concrete Mixes with Different Maximum Size Aggregates	
S. Al Martini, Z. Hassan and A. Khartabil Study of the Substitution of Natural Fine Aggregates by Stone Dust in the Concrete of the	346
Portland Cement W. Acchar, J.B. Duarte and V.M. Silva	351
Analysis of Technical Suitability of Using Wood Ash in Cement Based Materials V. Bennack, L.O.V. dalla Valentina and M.V. Folgueras	356
The Mechanical Properties Study of Waste Bakelite Aggregate Concrete N. Usahanunth, W. Kongsong, S. Tuprakay, S. Ruangchuay Tuprakay, S. Sinthaworn and S. Charoenrien	361
Egg as an Organic Building Material a Comparative Study and Understanding in Indian Context	
N. Gubba and E.K. Jebakumar	369
Optimization of Re-Mixing Recyclated Concrete Aggregates V. Venkrbec	374
Compressive Resistance of Environmental Concrete Using Fly Ash and Fine Aggregate for Replacing Traditional Sand D.L. Nguyen and M.T. Duong	382
Properties of Alkali Activated Slag Concrete Incorporating Waste Materials as Aggregate: A Review A. Adesina	388
Fresh and Mechanical Properties of Sustainable Concrete Using Recycled Aggregates A. Khartabil and S. Al Martini	395
Chapter 4: Other Variants of Basic Components Replacement	
Properties of Concrete with Eggshell Powder and Tyre Rubber Crumb C.B. Wei, O. Rokiah, R.P. Jaya, S.I. Doh, X.F. Li and N.I. Ramli	405
Carbonation Resistance of Sustainable Concrete Using Recycled Aggregate and Supplementary Cementitious Materials A. Khartabil and S. Al Martini	420
Innovative Sustainable Materials – Structural Stability Check of Various Waste Mix Concrete Material	120
A.R. Gupta and S.K. Deshmukh	427
Preliminary Assessment of Durability of Sustainable RC Structures with Mixed-In Seawater and Stainless Steel Reinforcement F. Lollini, M. Carsana, M. Gastaldi, E. Redaelli, L. Bertolini and A. Naani	443
Calculating Dynamic Strengths of Concrete Subjected to Impact Load Z.H. Abdulabbas and L.A.R. Al Asadi	451
Investigating Mechanical Properties of Sustainable Concrete Admixing Wollastonite Micro Fibre and Granite Block Cutting Waste A.K. Mandrawalia and A. Gaur	459
Chapter 5: Reinforcement and Fillers	
Embedding Bio-Filler Materials to Enhance Physical-Mechanical-Thermal Properties of Concrete	
N. Tangboriboon and S. Niyasom	471

Compressive and Flexural Strength of Concrete Containing Recycled Polyethylene Terephthalate (PET)	455
M.M.H. Shamsudin, N.H. Hamid and M.A.M. Fauzi	477
Effect of Surface Modification and Fibre Content on the Mechanical Properties of Coconut Fibre Reinforced Concrete	
C. Hettiarachchi and G. Thamarajah	486
Evaluation of the Mechanical Strength of a Concrete Modified with PET Fibers from Post- Consumer Bottles	
V.H. Blancas-Herrera, W. Martínez-Molina, H.L. Chavez-Garcia, J.A. Pacheco-Segovia, S.d.C. Argüello-Hernández, N. Díaz-González, H.M. Cruz-Reyes, E.M. Alonso-Guzmán and R.R. Ruiz	508
The Compressive Strength of Coconut Fibers Reinforced Nano Concrete Composite R.H. Lumingkewas, A.H. Yuwono, S.P. Hadiwardoyo and D. Saparudin	514
Concrete Reinforced with Recycled Steel Fibers from End of Life Tires: Mix-Design and Application	
G. Centonze, M. Leone, F. Micelli, D. Colonna and M.A. Aiello	520
Preliminary Study of Compressive Strength of Concrete Incorporated with Waste Paper	
Fibres M.S.H. Mohd Sani, F. Muftah and A.R. Osman	528
Influence of Asphalt Dust Waste Material in Mix Design for Self-Compacting Concrete S. Shahidan, I. Ismail, M.S.S. Zulkarnaian and N. Abd Rahman	534