Table of Contents

Summary Preface

Introductory Note

Table of Contents	
1. Formation of a Chemical Compound Layer at the Interface of Two Elementary Substances	
1.1 Description of the Kinetics of Solid-State Heterogeneous Reactions	1
1.2 Reaction Diffusion	3
Apbq Layer at the Expense of Diffusion Ofcomponent B	7
A_pB_q Layer at the Expense of Diffusion of Components A and B	19
1.5 Linear Growth of the Cu ₆ Sn ₅ Layer in the Copper-Tin Reaction Couple	31
1.6 Parabolic Growth of the AlSb Layer in the Aluminium-Antimonydiffusion Couple	34
1.7 Linear-Parabolic Growth of the SiO ₂ Layer between Silicon and Oxygen	38
1.8 Growth Kinetics of the NiBi ₃ Layer at the Nickel-Bismuth Interface	41
1.9 Interconnection between the Reaction- and Self-Diffusioncoefficient of the Components of a Chemical Compound	52
1.10 Single Compound Layer: Short Conclusions	68
2. Growth Kinetics of Two Compound Layers between Elementary Substances	
2.1 Partial Chemical Reactions at Phase Interfaces	70
2.2 A System of Differential Equations Describing the Rates of Formation of Two Chemical Compound Layers	73
A_pB_q and A_rB_s Layers	80
A _r B _s Layer Necessary for the A _p B _q Layer to Occur	84
A_pB_q Layer	86
A _p B _q Layer with Regard to Component A on the Process of Growth of the A _r B _s	88
2.7 Paralinear Growth Kinetics of Two Compound Layers	90
A_pB_q and A_rB_s Layers	96
2.9 Nibi Layer: Missing or too Thin?	112
2.10 Two Compound Layers: Short Conclusions	114
3. Occurrence of Multiple Compound Layers at the <i>a-b</i> Interface	
3. Occurrence of Multiple Compound Layers at the <i>a-b</i> interface	117
3.1 Chemical Reactions at Phase Interfaces in a Multiphase Binary System	120
3.2 A System of Differential Equations Describing the Growth Process of Three Chemical Compound Layers between Elementary Substances A and B	122
3.3 Initial Linear Growth of Three Compound Layers	126
3.4 Transition from Linear to Non-Linear Layer-Growth Kinetics	128
3.5 Critical Values of Compound-Layer Thicknesses and their Influence on Layer-Growth Kinetics	130
3.6 Diffusional Stage of Formation of Compound Layers	132
3.7 Sequence of Compound-Layer Formation at the A–B Interface	135
3.8 Formation of Intermetallic Layers in Ni–Zn and Co–Zn Diffusion Couples	152
3.9 Multiple Compound Layers: Short Conclusions	171

4. Growth Kinetics of the same Chemical Compound Layer in Various Pagetion Couples of a Multiphase Pinary System	
Reaction Couples of a Multiphase Binary System	
A_rB_s Layer in the $A-B$ Reaction Couple	173
A_rB_s Layer in the A_pB_q –B	174
A_rB_s Layer in the A_pB_q $-A_lB_n$ Reaction Couple	181
A _r B _s Layer in Various Reaction Couples of the A-B Multiphase Binary System	183
A_rB_s Layer	194
5. Reaction-Diffusion Kinetics in Solid-Liquid and Solid-Gas Systems	
4.6 Growth of the Chemical Compound Layer in Various Reaction Couples: Short Conclusions	201
5.1 Main Relationships Governing Dissolution of Solids in Liquids	203
5.2 Experimental Investigation of the Dissolution Process of a Solid in a Liquid	208
5.3 Growth Kinetics of the Chemical Compound Layer under Conditions of its Simultaneous Dissolution in the Liquid Phase	223
5.4 Growth Kinetics of Intermetallic Layers at the Transition Metal-Liquid Aluminum Interface	232
5.5 Interfacial Interaction of Nickel and Cobalt with Liquid Pb-Free Soldering Alloys	251
5.6 Peculiarities of Kinetic Dependences in Solid-Gas Systems	272
5.7 Reaction-Diffusion Kinetics in Solid-Liquid and Solid-Gas Systems: Short Conclusions	285
Concluding Domontes	

References

Keyword Index