Relaxation of Stress and Density, Strength (Fatigue)

Table of Contents

Preface	
1. Migration Processes Induced in Solids	1
2. Stress Relaxation in Glasses	7
3. Density Relaxations in Glasses	17
4. The Background of Internal Friction	27
5. Creep of Steel and the Static Fatigue of Glass	45
6. The Activation Energy of the Static Fatigue and Creep	57
7. Fatigue due to an Oscillating Load	67
8. Statistical Checks of Stromeyer's Fatigue Formula	99
9. Models for Defect Growth	105
10. Generalized Laws of Strength Degradation	113
11. A Compressive Stress Resulting from Tamm's Electronic Surface States	119
12. Environmental Influences on Fatigue Strength	135
13. The Activation Energy of Creep and the Surface Energy of Solids	139
14. Open Questions	147
A1. Nonlinear Regression	151
A2. Solutions for the Damped Oscillations 1	153
A3. Solutions for the Damped Oscillations 2	155
A4. Harmonics by Stress Relaxation	159
A5. The Approximate Linearity of Equation (7.9)	161
A6. A Tube-Like Specimen for Fatigue Tests	163
A7. Inhomogeneous Heating Caused by Internal Friction	167
A8. The Partial Differential Equation of the Temperature Field in a Cylinder Caused by	
Internal Friction	169

175

A9. A Hypothetical Specimen for an Easy Assessment of Induced Compressive Stress