Table of Contents

Preface

Chapter 1: Adequate Prediction of Structural Dynamic Syst	tem
Behavior for Decision Making in Early Design Stage	

Strut Using Bayesian Interval Hypothesis-Based Approach	
S. Mallapur and R. Platz	3
Sparse Gaussian Process Emulators for Surrogate Design Modelling P. Gardner, T.J. Rogers, C. Lord and R.J. Barthorpe	18
Chapter 2: Controlling Product Properties in Manufacturing Processes	
Reducing Uncertainty in Shunt Damping by Model-Predictive Product Stiffness Control in a Single Point Incremental Forming Process F. Hoppe, M. Knoll, B. Götz, M. Schaeffner and P. Groche	35
Cloudbased Production Optimization - Potential and Limits Today R. Feist	48
Towards Damage Controlled Hot Forming M. Bambach, I. Sizova and A. Emdadi	56
Numerical Comparison of Three Different Feedback Control Schemes Applied on a Forming Operation B. Endelt	64
Chapter 3: Contemporary Design - From Intelligent Components to Resilient Systems	
Adaptivity as a Property to Achieve Resilience of Load-Carrying Systems P.D. Schlemmer, H. Kloberdanz, C.M. Gehb and E. Kirchner	77
Resilient Product Development - A New Approach for Controlling Uncertainty P. Hedrich, N. Brötz and P.F. Pelz	88
Optimal Booster Station Design and Operation under Uncertain Load H. Sun, L.C. Altherr, J. Pei, P.F. Pelz and S.Q. Yuan	102
Chapter 4: Optimization under Uncertainty	
Optimal Placement of Active Bars for Buckling Control in Truss Structures under Bar Failures	
T. Gally, A. Kuttich, M.E. Pfetsch, M. Schaeffner and S. Ulbrich Robust Design of a Smart Structure under Manufacturing Uncertainty via Nonsmooth	119
PDE-Constrained Optimization P. Kolvenbach, S. Ulbrich, M. Krech and P. Groche	131
Chapter 5: Mastering Uncertainty by Digitalization	
Comparison of Inductive Inference Mechanisms and their Suitability for an Information Model for the Visualization of Uncertainty	1 47
M. Weber, G. Staudter and R. Anderl Concept of a Positiont Process Chain to Control Uncertainty of a Hydraulia Actuator	147
Concept of a Resilient Process Chain to Control Uncertainty of a Hydraulic Actuator I. Dietrich, P. Hedrich, C. Bölling, N. Brötz, F. Geßner and P.F. Pelz	156

Methods and Technologies for Research- and Metadata Management in Collaborative	
Experimental Research N. Preuss, G. Staudter, M. Weber, R. Anderl and P.F. Pelz	170
Chapter 6: Resilient Technical Systems	
Resilience in Mechanical Engineering - A Concept for Controlling Uncertainty during Design, Production and Usage Phase of Load-Carrying Structures	
L.C. Altherr, N. Brötz, I. Dietrich, T. Gally, F. Geßner, H. Kloberdanz, P. Leise, P.F. Pelz, P.D. Schlemmer and A. Schmitt	187
Towards Resilient Process Networks - Designing Booster Stations via Quantified Programming M. Hartisch, A. Herbst, U. Lorenz and J.B. Weber	199
Algorithmic Design and Resilience Assessment of Energy Efficient High-Rise Water Supply	199
Systems	
L.C. Altherr, P. Leise, M.E. Pfetsch and A. Schmitt	211
Chapter 7: Responsibility for Autonomous Systems	
Autonomous Manufacturing Processes under Legal Uncertainty L. Joggerst, M. Knoll, F. Hoppe, J. Wendt and P. Groche	227
On Obligations in the Development Process of Resilient Systems with Algorithmic Design Methods	,
L.C. Altherr, L. Joggerst, P. Leise, M.E. Pfetsch, A. Schmitt and J. Wendt	240
Chapter 8: Uncertainty in High Precision Manufacturing Processes	
Simulation of Multi-Stage Fine Machining Processes at the Example of Valve Guide and Valve Seat	
C. Bölling and E. Abele	255
Adjustment of Axis Offset Errors during Reaming A. Bretz, F. Geßner, T. Öztürk, C. Rinn and E. Abele	267
Cross-Domain Tolerance Analysis for Directional Control Valves Based on Imperfect	
Information R. Tautenhahn and J. Weber	276
Chapter 9: Uncertainty Quantification	
Estimation of Uncertainty in the Lateral Vibration Attenuation of a Beam with Piezo- Elastic Supports by Neural Networks	
B. Götz and S. Kersting	293
Inverse Interval Field Quantification via Digital Image Correlation M. Faes and D. Moens	304