Table of Contents

Preface
Table of Contents
Summary

I. Periodical Pulsation Ionic Flow Properties of Oxo-Olic Complexes of Zirconium and Silicium	
1.1 Polymerization of the Hydrated Particles of Zirconium Oxyhydrate	1
1.2 Emission-Wave Duality of Behavior of the Periodical Processes in the D- and F-	1
Elements' Oxyhydrates. 1.3 Periodicity of the Efficient Diffusion Coefficients	6
1.4 Quantization of the Pacemakers' Radiuses in Oxyhydrate Gels	7
1.5 Bifurcation of the Pacemakers' Radius Doubling in Gel Oxyhydrate Systems	8
1.6 Extensional Dilatancy and Dimensions of the Pacemakers	10
1.7 The Periodical State Isotherm	11
Abstract 1.1	13
1.8 other Forms and Types of Oscillatory Motions in Oxyhydrate Systems	14
Abstract 1.2. Instrumental Support	16
2. Behavior of Zirconium Oxyhydrate Gels Affected by the Spontaneous	
Pulsating Electrical Currents	
2.1 Theory	21
2.2 Synchronization of the Periodical Oxyhydrate Systems	24
2.3 Mathematical Modeling Problem	25
2.4 Connections between Certain Self-Organization Parameters	32
2.5 Conclusions	38
3. Zirconium Oxyhydrate Gels with Specifically Repeated Pulsation Macromolecules' Organizations: the Experimental Aspect	
3.1 Some of the TGM's Experimental Results	40
3.2 Oxyhydrate Clusters Structuring in Non-Equilibrium Conditions	45
3.3 the Way the Ageing Time Affects the Sorption Properties of the Zirconium Oxyhydrate	53
3.4 Conclusions	54
4. Modeling of the Oxyhydrate Gels' Shaping in an Active Excitable Medium. the Phase Transition Operator in Gels' Oxyhydrates (the Liesegang Operator)	
4.1 Modeling of Autowave Shaping Processes in D- and F- Elements' Oxyhydrate Gels. the Simplest Mathematical Model of the Reaction-Diffusion Type	56
4.2 Studies of a Modeled Oxyhydrate System	62
4.3 Modeling of the Gel Shaping in an Active Excitable Medium by Means of the Molecular Dynamics Methods and the Monte Carlo Method	73
4.4 Coulomb Diffusion Model	77
5. Liesegang Operator	
4.5 Conclusions	87

5.1 Liesegang Operator as a Reflection of the Gel Polymer Systems' Oscillatory Properties. Introduction of the Liesegang Operator	89
5.2 Studying a Highly Nonlinear Diffusion Equation	92
Abstract 5.1 Theorems	94
Abstract 5.2 Gel's Formation Stationary Problem	101
5.3 Simplified Notation for the Liesegang Operator	105
5.4 Hydrodynamic Approach	113
5.5 Liesegang Operator and some Experimental Data	114
5.6 Conclusions	121
	121
6. Liesegang Operator as a Consequence of the Ionic Molecular Motion inside the Lenard-Jones Potential	
6.1 Single-Particle Problem. Cluster's Motion in the Field of the Lenard-Jones Potential	123
6.2 Cluster Motion in the Lenard-Jones Potential	131
6.3 Experimental Detection of the Current Surges' Periodical Toroid Conformations in the Gel Oxyhydrate Systems, the Structural Self-Organization Stages	151
Abstract 6.1 Formative Characteristics of Zirconium Oxyhydrate Conformers	156
6.4 Colloid Chemical Version of the Arnold Diffusion in Oxyhydrate Systems	161
6.5 Conclusions	167
7. Organizational Mechanism in Colloid Chemical Stochastic Systems	
7.1 Compiled Theoretical Consideration of the Synchronization Mechanism in Stochastic	
Systems as such	171
7.2 Calculation and Recovery of the Self-Organization Current Surges' Attractors in the Zirconium Oxyhydrate's Macromolecules with an Optimal Delay	184
7.3 Role of the Noise in Excitable Oxyhydrate Systems	185
7.4 Analysis of Experimental Poincaré Cross-Sections in Zirconium, Oxyhydrate Colloid Gels	191
7.5 Conclusions	215
Abstract 7.1 Album	219
Abstract 7.2 Table 1. Dimensions and Frequencies of the Clusters Formed in the Zirconium Gel Oxyhydrate Systems	395
Abstract 7.3 Table 2. some Data on Ageing of the Zirconium Oxyhydrate Gel	401
8. Phase Flow of Oxyhydrate Gels and their Place among the Concepts of Colloid Chemistry	
8.1 Attractors in Colloid Chemical Flow Systems	405
8.2 Experimental Manifestation of Alterations in Noise Viscous Parameters of Gel Oxyhydrate Systems when they Flow	418
8.3 Formation of Nonequilibrium Oxyhydrate Structures	425
8.4 Conclusions	428
Abstract 8.1	430
9. Optical and other Properties, and Gel Oxyhydrate "noise"	
9.1 Light Absorption Equation on Conformer "Noise" Clusters	457
9.2 The Way the Pulsation Noise or Self-Organizational Current in a Magnetic Field Affects Optical Parameters of Zirconium Oxyhydrate	465
9.3 Optical Density Kinetic Curves for Yttrium Oxyhydrate Gels	469
9.4 Conclusions	476

10. "Lag Effect."	The Way an External Magnetic Activation Affects	
Oxyhydrate Gels	·	

10.1 The Way an External Magnetic Field Affects Toroid Stochastic Noise in a Gel	
Oxyhydrate Šystem	479
10.2 Stable Magnetic Field and Oxyhydrate Gels' Freshly Deposed Residues	485
10.3 Conclusions	488

References