Papers by Keyword: Anorthite

Paper TitlePage

Authors: Hao Bai, Pu Liu, Xian Bin Ai, Li Hua Zhao, Qi Tang, Shu Long Zheng
Abstract: As by-product of steeling making, steel slag accounts for 10% to 13% of steel production. Utilization of it as resource has been tried in many fields. For example, it can be used as building materials, most for paving and backfilling. However, utilization level of steel slag is still low, and to find a novel way to utilize steel slag efficiently is urgent. Steel slag includes much calcium and silicon, similar to those of clay, which means that it can be one of the raw materials for ceramic sintering. In this research, the process of steel-slag based ceramics sintering was developed. The ceramic tiles with excellent performance were obtained, with up to 36% steel slag added. By EPMA, the possible crystal phases that exist in the ceramic samples have been discussed. By XRD analysis, the main crystal phases of steel slag ceramics were identified, which are anorthite, α-quartz and magnetite. The clinoenstatite can be obtained through increasing the proportion of steel slag in the formula. The diopside can be obtained if the talc was added. These are key factors to obtain excellent performance ceramic tiles under low sintering temperature.
133
Authors: Ya Mei Lin, Cui Wei Li, Feng Kun Yang, Chang An Wang
Abstract: Porous anorthite/mullite composite ceramics with different mullite content were fabricated by foam-gelcasting, using CaCO3, SiO2, α-Al2O3 as raw material for anorthite phase and mullite powder for mullite phase. Effects of mullite powder content on bulk density, porosity, compressive strength and thermal conductivity of the porous composite ceramics were researched. It has been shown that mullite powder content has great effect on microstructure and properties of the porous anorthite⁄mullite composite ceramics. The open porosity of the prepared porous anorthite⁄mullite composite ceramics is in the range of 58.7 %~77.5 %, the compressive strength is between 4.2 and 30.9 MPa, and the thermal conductivity is in the range of 0.18 ~1.47 W⁄(m·K).
590
Authors: Radomír Sokolař, Lucie Vodová, Mikuláš Šveda
Abstract: Influence of limestone sludge (generated during the washing process of limestone crushed aggregates) with high content of CaO in the form of calcite on the properties of brick body made from non-calcareous sludge (from the washing process of quartz sand) as a basic plastic brick clay was determined. Presence of calcite very distinctly influenced the firing process and properties of fired body. Limestone sludge decreases firing shrinkage, bulk density and coefficient of thermal conductivity of the brick body after the firing in the range of 850 – 950 °C. Higher modulus of rupture and water absorption is typical for fired bodies with limestone sludge addition. Most of these improvement are caused by the formation of anorthite only in the bodies based on the limestone sludge.
158
Authors: Abdelhamid Harabi, M.R. Boudchicha, N. Aklouche, S. Achour
111
Authors: A. Mergen, T.S. Kayed, M. Bilen, A.F. Qasrawi, Metin Gürü
1475
Showing 1 to 10 of 11 Paper Titles