Papers by Keyword: Butterfly Pivot

Paper TitlePage

Authors: Ya Fei Lu, Xiao Yao Zhou, Da Peng Fan, Zhi Yong Zhang
Abstract: Butterfly pivot is a large-travel rotational flexure pivot, which can provide elastic support for the rotational shaft in several ten degrees. Rotational precision is of great important for its application. Because of the complex structure, rotational precision is always taken with Finite Element Method (FEM), which is not suitable for design and optimize parametrically. The structure property of the butterfly pivot is analyzed before the precision analysis. Four-Blade Isosceles-Trapezoid Element is present as the basic structure unit of the Butterfly Pivot. And then, Rotational precision of the Four-blade Isosceles-Trapezoid unit is calculated and analyzed. The Self-Compensation performance of the butterfly Pivot is also studied. Work in this thesis can validate the high rotational precision of the butterfly pivot.
413
Authors: Ya Fei Lu, Qing Kun Zhou, De Jun Sheng, Da Peng Fan, Zhi Yong Zhang
Abstract: Butterfly pivot is a large-travel rotational flexure pivot, which can provide elastic support for the rotational shaft in several ten degrees. Because of the complex structure, stiffness calculation of butterfly pivot is always completed by the method of Finite Element Analysis (FEA), which is not suitable for parameter design and optimization. The serial structure of four-blade isosceles-trapezoid (FBIT)is proposed to simplified the complex structure of the butterfly pivot. The FBIT is analyzed and the theoretical formula of stiffness calculation for rotation stiffness is derived in detail based on the essential theory of Mechanics of Materials. Design and optimization of rotation stiffness for each element can be achieved easily with the obtained the theoretical formula of rotation stiffness. The total rotation stiffness of the whole butterfly pivot is calculated and the rotation stiffness comparison between using the theoretical method and by the method of FEA is performed. The error between the theoretical rotation stiffness and the result of the FEA is less than 10%. It is acceptable and without any influence on the validity of the work and concept presented in this paper.
694
Showing 1 to 2 of 2 Paper Titles