Papers by Keyword: Compliant Control

Paper TitlePage

Authors: Jian Ming Zhan, Zhi Qiang Cao, Ming Ming Wu, Jian Bo Zhang
Abstract: Hard-brittle materials can be polished by hydrodynamic suspension, which is based on the theory of sound eradiating. Owing to the high-speed rotating of the polishing tool, the polishing slurry would form dynamic pressure in the clearance between the work-piece and the tool. The dynamic pressure supplies abrasive particles the energy needed to impact on the work-piece surface, so the dynamic pressure will directly affect the machining effect. In order to obtain the steady and consistent machining quality, it’s necessary to implement the compliant control in the machining process, and adjust the dynamic pressure when needed. This paper utilizes piezoelectric ceramic micro-displacement actuating to investigate the technique that can achieve the control of micro-displacement between the polishing tool and the work-piece. It provides an effective mean for hydrodynamic slurry pressure in the hydrodynamic suspension ultra-smooth machining.
Authors: Huan Bing Gao, Shou Yin Lu, Guo Hui Tian
Abstract: Two arms are attached on the live-working robot for cooperating jobs and some task requiring larger stiffness such as pushing and butting when replacing cross arm or insulator. The different kinematic structure of this two arms brings many difficulties to get the dynamic model of the total system. This paper proposes a force control method to solve this problem. Two arms are considered as one arm firstly, then the general stiffness matrix is obtained. And based on the compliant relationship between the dual arms and the environment, the force control method for the exact force control is presented. The scheme is experimentally tested on the live-working robot, and the effectiveness and rapidity is validated .
Authors: Ming Ming Wu, Jian Ming Zhan, Jian Bo Zhang
Abstract: . Lots of new automatic polishing methods and equipments have been developed to solve the problem of low efficiency and quality in the traditional handwork curved surfaces polishing. However, these methods and equipments are complex and difficult to be applied in the industrial production. This paper proposes a new technology of rotate surface compliant polishing based on NC lathe cutter radius compensation. An efficient and compact rotate surfaces compliant polishing system is developed, which consists of a NC lathe, flexible polishing tool, workpiece, fixture and also the automatic programming software MASTERCAM. The polishing tool-path and NC code can be created in MASTERCAM. The value of the cutter radius compensation can also be set in NC code, so that the rotated surfaces can be polished by a traditional NC lathe. Experiment of polishing the aluminum sphere workpiece is taken, and the satisfying surface quality is achieved.
Showing 1 to 3 of 3 Paper Titles