Papers by Keyword: Creep Performance

Paper TitlePage

Authors: Beong Bok Hwang, Y.H. Lee, K.H. Min, Jung Min Seo, Han Yong Jeon
Abstract: Geo-composites are generally made by hybridizing of some components among geo-textile, geo-grid, geo-membrane, geo-net, and other materials. Due to practical applicability of geotechnical structures, the demand of geo-composites, especially for drainage application, has gradually increased. In the present study, the geo-composites bonded with geo-grid in chemical process were investigated experimentally in terms of strain evaluation and creep response values. Geo-grid plays an important role as a reinforcing material. Three kinds of geo-grid were prepared as strong yarn polyester and they were woven type, non-woven type, and wrap knitted type. The sample geo-grids were then coated with PVC. The rib tensile strength tests were conducted to evaluate geo-grid products in terms of tensile strength with regard to single rib. The test was performed according to GRI-GGI. The test results revealed that the tensile strains at the maximum tensile strength showed very good tensile deformation characteristics in the range of 10.0-13.0% in terms of mono-rib performance. Any significant trends have not found between warp knitted and woven type geo-grid in terms of the tensile strength ratios. Further experimental analysis has been conducted to investigate the wide-width strip tensile strength, contact point strength and creep features of the geo-grid samples used in this study. It was concluded again from the experiments that the tensile and creep strains of the geo-grid showed so stable values that the geo-grid prepared in this study could protect geo-textile partially in practical structure.
979
Authors: Yan Cao, Wei Hong Wang, Hai Long Xu, Qing Wen Wang
Abstract: In order to optimize the size of wood fiber reinforced polymer, and extend the application field of wood fiber reinforced polymer composites and improve the safety of their use, four size of wood fiber reinforced high-density polyethylene (HDPE) composites were prepared by forming mat-compression molding. The four kinds of fibers of different size include 80-120 mesh, 40-80 mesh, 20-40 mesh and 10-20 mesh fibers. The flexural performance, impact resistance performance and 24 hours creep - 24 hours recovery of the composites are studied. Fiber of 20-40 mesh presents the best flexural and impact resistance performance. The flexural strength, the elastic modulus and the impact strength reach 26.71MPa, 2.73Gpa and 6.88 KJ/m2 respectively. The impact performance of wood fiber/HDPE composites do not change a lot, while the fiber size increases from 10 to 80 mesh. However, the composites containing 80-120 mesh fibers has minimum impact performance. The creep performance of the wood fiber/HDPE composites with 80-120 mesh is the worst. After 24h creep test, the strain of the other three groups is almost the same. Creep recovery of the composites reinforced with 40-80 mesh fiber is the worst (61.74%). The creep recovery of the other three is above seven percent. Therefore, excessively large or small fiber size proves to be negative to improve the mechanical and creep performance, and polymer composites reinforced by them are not suitable for work under long-term load.
91
Authors: Jian Yin, Yi Jin Li, Ke Ren Zheng, Shi Dong Luo, Ai Guo Yan, Zhen Biao Liu
Abstract: It was tested creep performance of C60 high strength concrete and C60 HPC to calculate the long-term creep of C60 HPC accurately, which was combined with engineering construction of Yichang Chang Jiang Railway Bridge. It was concluded the creep degree and creep coefficient of C60 HPC by means of optimization fit calculation, which gives scientific foundation for the design and construction of this bridge.
400
Showing 1 to 3 of 3 Paper Titles