Papers by Keyword: Diffusion

Paper TitlePage

Authors: Fei Cao, Fen Fen Yang, Xue Jian Wang, Hui Jun Kang, Ya Nan Fu, Tong Min Wang
Abstract: Synchrotron X-ray radiography was used to in situ study the diffusion behavior and microstructural evolution of Al/Cu bimetal. The interface diffusion, dendritic/eutectic growth and the formation of intermetallic compounds around the Al/Cu bimetal interface were analyzed. During the isothermal diffusion process, a liquefied transition zone at the interface with a concentration gradient was formed when the Cu concentration exceeded eutectic composition of Al-Cu alloy. During the solidification of transition zone, the growth sequence of α-Al dendrites and eutectic structure were mainly dominated by the variation of Cu concentration and thermal field according to the temperature of the liquidus line of the equilibrium phase diagram. Finally, the transition zone around the interface were identified to be I (α-Al), II (Al+Al2Cu), III (Al2Cu) and IV (Al2Cu, AlCu and Al4Cu9), respectively.
1020
Authors: B. Notario, Javier Pinto, E. Solórzano, J. Escudero, J. Martín de León, D. Velasco, Miguel A. Rodríguez-Pérez
Abstract: An own-designed pressure vessel with glass windows has been employed to perform an in-situ characterization of the temporal evolution of the crystallization process of an amorphous polylactic acid (PLA) under different controlled CO2 pressures and temperatures. It has been proven that crystallinity can be related to optical parameters such as transmissivity, obtaining information about the whole process by optical measurements. The method has the advantage of measuring in-situ over bulk samples with a non-destructive tool. The obtained results have shown some unexpected trends that have been explained taking into account the complex phenomena occurring during the crystallization process of PLA in the presence of CO2 at high pressure.
131
Authors: J. Sheng, U. Welzel, Eric J. Mittemeijer
Abstract: The stress evolution during diffusion annealing of Ni-Cu bilayers (individual layer thicknesses of 50 nm) was investigated employing ex-situ and in-situ X-ray diffraction measurements. Annealing at relatively low homologous temperatures (about 0.3 - 0.4 Tm) for durations up to about 100 hours results in considerable diffusional intermixing, as demonstrated by Auger-electron spectroscopy investigations (in combination with sputter-depth profiling). In addition to thermal stresses due to differences of the coefficients of thermal expansion of layers and substrate, tensile stress con-tributions in the sublayers arise during the diffusion anneals. The obtained stress data have been discussed in terms of possible mechanisms of stress generation. The influence of diffusion on stress development in the sublayers of the diffusion couple during heating and isothermal annealing was investigated by comparing stress changes in the bilayer system with corresponding results obtained under identical conditions for single layers of the components in the bilayer system. The specific residual stresses that emerge due to diffusion between the (sub)layers in the bilayer could thereby be identified.
503
Authors: Tomáš Záležák, Antonín Dlouhý
Abstract: A 3D model is presented that addresses an evolution of flexible dislocation lines at high temperatures. The model is based on the linear theory of elasticity. A smooth dislocation line is approximated by a piecewise curve composed of short straight dislocation segments. Each dislocation segment is acted upon by a Peach-Koehler force due to a local stress field. All segment-segment interactions as well as an externally applied stress are considered. A segment mobility is proportional to the Peach-Koehler force, temperature-dependent factors control climb and glide motion of the segments. The potential of the model is demonstrated in simulations of simple high temperature processes including interactions of dislocations with secondary particles.
115
Authors: I.V. Sobchenko, Andriy Gusak, K.N. Tu
1281
Authors: Xavier Sauvage
Abstract: Concentration gradients resulting from long range diffusion during Severe Plastic Deformation (SPD) have been investigated with the 3D Atom Probe technique (3D-AP). First, in a pearlitic steel where alloying elements (Mn, Si and Cr) are partitioned between the ferrite and carbides in the non-deformed state. After processing by High Pressure Torsion (HPT), they are homogeneously distributed in the nanostructure, indicating that long range diffusion occurred along with the dissolution of carbides. 3D-AP data of a Cu-Fe composite processed by HPT show as well a significant interdiffusion of Cu and Fe, probably promoted by additional vacancies. On the basis of these experimental data, and using the theory described for irradiated materials, vacancy fluxes and vacancy production rates were estimated assuming that new vacancies are continuously produced and eliminated on grain boundaries.
433
Authors: A.V. Suvorov, Lori A. Lipkin, G.M. Johnson, Ranbir Singh, John W. Palmour
1275
Authors: Margareta K. Linnarsson, J. Isberg, Adolf Schöner, Anders Hallén
Abstract: The boron diffusion in three kinds of group IV semiconductors: silicon, silicon carbide and synthetic diamond has been studied by secondary ion mass spectrometry. Ion implantation of 300 keV, 11B-ions to a dose of 21014 cm-2 has been performed. The samples are subsequently annealed at temperatures ranging from 800 to 1650 °C for 5 minutes up to 8 hours. In silicon and silicon carbide, the boron diffusion is attributed to a transient process and the level of out-diffusion is correlated to intrinsic carrier concentration. No transient, out-diffused, boron tail is revealed in diamond at these temperatures.
453
Authors: G. Morrison, M.A. Alario-Franco, E. Moran, Alan V. Chadwick
403
Authors: Srdjan Nešić, Magnus Nordsveen, Rolf Nyborg, Aage Stangeland
1661
Showing 1 to 10 of 1255 Paper Titles