Papers by Keyword: Full Factorial Design (FFD)

Paper TitlePage

Authors: Seung Yub Baek, Jung Hyung Lee, Eun Sang Lee, H.D. Lee
Abstract: To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with the mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and with the spherical lens of BK7. The optimization of grinding conditions with respect to ground surface roughness and profiles accuracy is investigated by design of experiments.
27
Authors: S. Izman, A Shayganpour, Mohd Hasbullah Idris
Abstract: Abstract. In the present research, an experimental investigation in lost foam casting of an aluminum-silicon cast alloy, LM6, was conducted. The main objective of the study was to investigate the effect of different sand size and vibration time on the surface roughness of thin-wall castings. A stepped pattern with a 3 mm section in the thinnest step was used for the investigation. A full 2-level factorial design experimental technique was used to identify the significant factors which affect the surface roughness of casting. The results were evaluated by means of variance analysis. It is founded that surface roughness deteriorates with higher sand grain size and vice versa. In contrast, vibration time was found has no significant effect to the quality of casting surface.
422
Authors: Prachya Peasura, Narasak Duangsrikaew, Santirat Nansaarng
Abstract: In this research, the post weld heat treatment (PWHT) of duplex stainless steel (DSS) was study. The PWHT process can be affected by differing parameters. The specimen was duplex stainless steel UNS31803 grade sheet of 10 mm thickness. The PWHT parameters were analyzed by application of full factorial design. The factors used in this study were PWHT temperature of 650, 750, and 850 C with PWA time of 1, 2, 4 and 8 hours. The welded specimens were tested with micro vickers hardness and ferrite content testing according to ASTM E3-11 code. The result showed that both of PWHT temperature and PWHT time interaction on hardness and ferrite content for 95% confidential (P value < 0.05). The factor in most effect of hardness was the PWHT temperature of 850C and PWHT time for 4 hour at the hardness of 277.73 HV. The ferrite was the most ferrite content for 77.39% resulted in corrosion resistance due to suitable of PWHT temperature 750 C and PWHT time for 8 hour. Finally, form PWHT process with the information was used choosing the appropriate for PWHT parameters to duplex stainless steel welds.
178
Authors: Prachya Peasura, Bovornchok Poopat
Abstract: Alloy X-750 also has excellent properties down to cryogenic temperatures high stability and strength at high temperatures. This reason the alloy is used in manufacturing of gas turbine hot components. The research was study the effect of post weld heat treatment (PWHT) parameter on hardness and microstructure. The specimen was Inconel X-750 grade sheet of 2.8 mm thickness. This 23 factorial design was used in experimental various post weld heat treatment at 705 and 845°C for 20 and 24 hour including solution temperature at 1,000 and 1,150°C. The welded specimens were tested by hardness testing in fusion zone (FZ) and heat affected zone (HAZ). The result showed that both of solution temperature, PWHT temperature and PWHT time interaction on hardness of FZ and HAZ at 95% confidential (P value < 0.05). The PWHT temperature and PWHT time interaction effect was the largest. The factor showed in the hardness increase with the low level (-1) of PWHT temperature and PWHT time for the hardness while it trended decrease for the solution temperature. The microstructure was the γ amount and small size would result in high hardness. Experimental results showed that the solution temperature at 1,150°C, PWHT temperature 705°C PWHT time of 20 hours provided intensity of gamma prime (γ) and MC carbide resulting in higher hardness both in FZ and HAZ.
188
Authors: S. Izman, Amirreza Shayganpour, M.H. Idris, Hassan Jafari
Abstract: Lost foam casting is a relatively new process in commercial terms and is widely used to produce defect free castings owing to its advantages like producing complex shape and acceptable surface finish. In the present research, experimental investigations in lost foam casting of aluminium-silicon cast alloy, LM6, were conducted. The main objective of the study was to evaluate the effect of different sand sizes and pouring temperatures on the porosity of thin-wall castings. A stepped pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full 2-level factorial design experimental technique was employed to plan the experiment and subsequently identify the significant factors which affect the casting porosity. The result shows that increasing in the pouring temperature decreases the porosity in the thin-wall section of casting. Finer sand size is more favourable than coarse size for LFC mould making process.
2661
Authors: S. Izman, Amirreza Shayganpour, M.H. Idris
Abstract: Cast aluminium alloys often contain microstructural defects resulting from the casting process such as porosity. Developments of Lost foam casting (LFC) process is considered as one of the most rapid in casting technology owing to its unique advantages on energy savings and capabilities to produce castings with thin sections. In the present research, experimental investigations in lost foam casting of aluminium-silicon cast alloy, LM6, were conducted. The main objective of the study was to evaluate the effect of different pouring temperatures, slurry viscosities, vibration times and sand sizes on the porosity of castings. A stepped pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full 2-level factorial design experimental technique was employed to plan the experiment and subsequently identify the significant factors which affect the casting porosity. The result shows that increasing in the pouring temperature decreases the porosity in the thin-wall section and finer sand size is more favourable than coarse size for LFC mould making process.
1198
Authors: Mongkol Chaisri, Prachya Peasura
Abstract: The research was study the effect of gas metal arc welding process parameters on mechanical property. The specimen was carbon steel ASTM A285 grade A which thickness of 6 mm. The experiments with full factorial design. The factors used in this study are shielding gas and voltage. The welded specimens were tested by tensile strength testing and hardness testing according to ASME boiler and pressure vessel code section IX 2007. The result showed that both of shielding gas and voltage had interaction on tensile strength and hardness at 95% confidential (P value < 0.05). Factors affecting the tensile strength are the most carbon dioxide and 27 voltage were tensile strength 213.43 MPa. And hardness maximum of 170.60 HV can be used carbon dioxide and 24 voltage. This research can be used as data in the following appropriate parameters to gas metal arc welding process.
16
Authors: Prachya Peasura, Lersak Sumarn
Abstract: The research was study the effect of post weld heat treatment parameters on microstructure and hardness in heat affected zone. The specimen was carbon steel AISI 1050 which thickness of 6 mm. The experiments with full factorial design. The factors used in this study were post weld heat treatment(PWHT) temperature of 500, 550, 600, 650 and post weld heat treatment time of 10 and 15 hour. The welded specimens were tested by tensile strength testing and hardness testing according to ASTM code. The result showed that both of post welds heat treatment temperature and post weld heat treatment time had interaction on hardness at 95% confidential (P value < 0.05). A factor affecting the hardness was the most PWHT temperature 550 ๐C and PWHT time 10 hr. of 279 HV. Microstructure can be concluded that low PWHT temperature and time effect on temper martensite with a coarse grain and martensite scattered throughout. Martensite was a smaller and greater fine grain, the ferrite and the volume decrease due to a higher temperature.This research can be used as data in the following appropriate PWHT parameters to carbon steel weld.
612
Authors: Potejanasak Potejana, Erawin Thavorn, Chakthong Thongchattu
Abstract: This research proposes a new application of Electrical Discharge Machine (EDM) for cutting the rubber carbon black. The new material of this study was a natural rubber mixed with carbon black for increased electrical conductivity of natural rubber. was accomplished through the technique of design and analysis of experiment and statistical analysis. The 24 Full factorial design was selected to conduct the experiment to determine the optimal mixed rubber cutting process parameters. The study has been carried out on the influence of design factors of the concentrate amount of carbon black per hundred of natural rubber (PHR), the voltage across the gap between and electrode tool and workpieces (Volt), the value of the discharge current (Ampere), and the duration of time (On-time, μs) that current is allowed to flow per cycle over response variables arithmetic surface roughness and material removal rate. The experimental results have shown the value of the discharge current that significantly affect to the degree of material removal rate of rubber mixed with carbon black and the duration of time that significantly affect to the degree of arithmetic surface roughness.
3
Authors: Prachya Peasura
Abstract: This research was to study of gas tungsten arc welding (GTAW) welding parameters that affects to the mechanical properties of aluminum alloy AA5083 welding with GTAW. The full factorial design was experiment. The factors was study in type of polarity on alternating current (AC), direct current electrode negative (DCEN) and direct current electrode positive (DCEP), levels of welding current for 180,200,220 and 240 amp. The specimen to analyses the physical properties has microstructure and hardness of weld metal and heat affected zone. The result showed that type of welding current and levels of welding current interaction hardness at the level of confidence 95% (P-value<0.05). The factor hardness maximum of weld metal was alternating current at level of current 240 amp. and hardness of 136.53 HV. The factor hardness maximum of HAZ value was alternating current at level of welding 220 amp. and hardness of 169.43 HV. The welding parameters can result in increasing Mg2Si intensity in parent phase. It can also be observed that Mg2Si at the parent phase decreased due to high welding current in HAZ.This research can be used as information in choosing how to welding parameter for gas tungsten arc welding of aluminum alloy.
183
Showing 1 to 10 of 17 Paper Titles