Papers by Keyword: Hot-Wall CVD

Paper TitlePage

Authors: Wei Ji, Peter M. Lofgren, Christer Hallin, Chun-Yuan Gu
Authors: Christian Hecht, Bernd Thomas, René A. Stein, Peter Friedrichs
Abstract: In this paper, we present results of epitaxial layer deposition for production needs using our hot-wall CVD multi-wafer system VP2000HW from Epigress with a capability of processing 7×3” or 6×100mm wafers per run in a new 100mm setup. Intra-wafer and wafer-to-wafer homogeneities of doping and thickness for full-loaded 6×100mm and 7×3” runs will be shown. Results on Schottky Barrier Diodes (SBD) processed in the multi-wafer system will be given. Furthermore, we show results for n- and p-type SiC homoepitaxial growth on 3”, 4° off-oriented substrates using a single-wafer hot-wall reactor VP508GFR from Epigress for the development of PiN-diodes with blocking voltages above 6.5 kV. Characteristics of n- and p-type epilayers and doping memory effects are discussed. 6.5 kV PiN-diodes were fabricated and electrically characterized. Results on reverse blocking behaviour, forward characteristics and drift stability will be presented.
Authors: Urban Forsberg, Örjan Danielsson, Anne Henry, Margareta K. Linnarsson, Erik Janzén
Authors: Günter Wagner, W. Leitenberger, K. Irmscher, Frank Schmid, Michael Laube, Gerhard Pensl
Authors: Bernd Thomas, Christian Hecht, René A. Stein, Peter Friedrichs
Abstract: The rapid market development for SiC-devices during the last years can be attributed particularly to the success in supplying high-quality SiC wafers and corresponding epitaxial layers. The device quality could be enhanced and the costs were reduced by enlarging the wafer size as well as by a significant progress in epitaxial growth of active layers by using multi-wafer CVD systems. In this paper we want to give an overview of CVD multi-wafer systems used for SiC growth in the past and today. We present recent results of SiC homoepitaxial growth using our multi-wafer hot-wall CVD system. This equipment exhibits a capacity of 5×3” wafers per run and can be upgraded to a 7×3” or 5×4” setup. By optimizing the process conditions epitaxial layers with excellent crystal quality, purity and homogeneity of doping and thickness have been grown. Issues like reproducibility, drift of parameters and system stability over several runs will be discussed.
Authors: Y. Shishkin, Yue Ke, Fei Yan, Robert P. Devaty, Wolfgang J. Choyke, Stephen E. Saddow
Abstract: Hot-wall chemical vapor deposition has been used to epitaxially grow SiC layers on porous n-type 4H-SiC substrates. The growth was carried out at different speeds on porous layers of two different thicknesses. The quality of the SiC films was evaluated by X-ray diffraction and photoluminescence techniques. Based on the measurements, both the growth speed and the thickness of the porous layer buried underneath the epilayers do not appear to influence the structural integrity of the films. The intensity of the near bandedge low temperature photoluminescence appears stronger by a factor of two in films grown on porous layers.
Authors: Ioana Pintilie, L. Pintilie, K. Irmscher, Bernd Thomas
Authors: Shi Yang Ji, Kazutoshi Kojima, Ryoji Kosugi, Shingo Saito, Yuuki Sakuma, Yasuko Matsukawa, Yoshiyuki Yonezawa, Sadafumi Yoshida, Hajime Okumura
Abstract: The effect of H2 carrier gas on the growth rate during the trench filling using CVD epitaxial growth was investigated in a wide pressure range (10∼38 kPa). It is found that, in the entire pressure range, reducing H2 flow rate can increase the filling rate (the growth rate inside trench) and the filling efficiency (the thickness ratio between epilayer on trench bottom and mesa top), which means a high productivity and a low risk of void defects. The filling rate and efficiency of ∼1.5 μm/h and ∼18 respectively was achieved at 38 kPa.
Authors: René A. Stein, Bernd Thomas, Christian Hecht
Abstract: Epitaxial layers have been grown on the (0001) C-face of 2- and 3-inch 4H-SiC wafers. Growth conditions like temperature, pressure, and C/Si ratio have been varied. In both systems smooth surface morphologies could be obtained. The main challenge of epitaxial growth on the Cface of 4H-SiC for electronic device applications seems to be the control of low doping concentration. High temperature and low pressure are the key parameters to reduce the nitrogen incorporation. The hot-wall CVD system used for these experiments allowed the application of higher temperatures and lower pressures than the cold-wall equipment. The lowest doping concentration of 2.5x1015 cm-3 has been achieved by hot-wall epitaxy using a temperature of 1625 °C, a system pressure of 50 hPa, a C/Si ratio of 1.4, and a growth rate of 6.5 2mh-1. Good doping homogeneity on 2-inch and 3-inch wafers could be achieved. For a doping level of ND-NA= 3×1015 cm-3 sigma is about 15%.
Showing 1 to 10 of 49 Paper Titles