Papers by Keyword: Indentation Size Effect (ISE)

Paper TitlePage

Authors: Y.L. Chiu, W. George Ferguson
Abstract: Nanoindentation technique has been widely used for measuring mechanical properties from a very small volume of material. The hardness measured using the depth sensing nanoindentation technique often decreases with increasing indentation size, the so called indentation size effect (ISE)[1, 2]. It has been generally acknowledged that the ISE in crystalline materials originates from the density change of geometrically necessary dislocations (GND) needed to accommodate a permanent indentation imprint. Conventionally, to characterize an ISE often requires a series measurement of hardness values at different indentation size. Based on the celebrated Oliver-Pharr scheme[3]. We propose a method to derive the ISE from the loading curve of one single indentation test. The application and limitation of the proposed method will be discussed.
55
Authors: L. Zhou, Ying Xue Yao, Qiang Liu
Abstract: Aiming at the influence law of indenter tip radius to indentation hardness, testing on the hardness of single-crystal silicon was carried out based on nanoindentation technique. Two kinds of Berkovich indenter with radius 40nm and 60nm separately were used in this experiment. According to the load-depth curve, the hardness of single-crystal silicon was achieved by Oliver-Pharr method. Experimental results are presented which show that indenter tip radius influence the hardness, the hardness value increases and the indentation size effect becomes obvious with the increasing of tip radius under same indentation depth.
327
Authors: Te Hua Fang, S.H. Kang
Abstract: The characteristics of morphology, friction and nanotribological properties of ZnO thin films were achieved by means of x-ray diffraction, scanning probe microscopy (SPM), and nanoindentation. The ZnO thin films were deposited by a radio frequency magnetron sputtering system. Surface geometry and friction analysis were derived from atomic force microscopy/friction force microscopy (AFM/FFM). The hardness and Young’s modulus of the ZnO thin films were investigated by nanoindentation measurements with a Berkovich indenter. The films exhibited an increase in the hardness with decreasing load i.e. the indentation size effect (ISE) was found. In addition, the nanoscratched mechanical property of the films was discussed.
609
Authors: Jon Alkorta, C.J. Luis-Pérez, E.N. Popova, Martin Hafok, Reinhard Pippan, J. Gil Sevillano
Abstract: A commercially pure niobium has been subjected to SPD at room temperature ( ~0.11 TM) via ECAP (90º, route BC) up to 16 passes and via HPT up to shear strains γ =1000. ECAP-ed samples show an equiaxed structure after 8 and 16 passes with a decreasing average grain size. The results show that both the microstructure and mechanical properties of ECAP-ed samples do not reach a steady state up to at least 16 passes. HPT samples show at outer region a finer structural size but similar hardness values at similar equivalent strains. The nanoindentation results show an evident indentation size-effect even for the most deformed samples. The hardness values at the nano level converge for the recrystallized, the ECAP-ed and the HPT samples. This implies that, at the nano level, when the geometrically necessary dislocation density overcomes significantly the (initial) statistically stored dislocation density, hardness depends mainly on the physical intrinsic properties of the material (Burgers modulus, bulk modulus...) and the contribution of bulk mechanical properties (i.e., bulk yield strength) to hardness is smoothed down. Strain-rate sensitivity (SRS) of plastic strength has been also measured by means of rate-jump nanoindentation tests. The SRS is proportional to the inverse of hardness.
215
Authors: B. Yang, Horst Vehoff, Reinhard Pippan
Abstract: A summary of experimental results from nanoindentation, strain rate-controlled tension, in-situ bending and high pressure torsion on bulk electrodeposited nanocrystalline nickel, focusing on the effects of grain size on the mechanical behaviour and deformation mechanisms is presented. The interaction between dislocations and grain boundaries was locally examined by studying the dependence of nanohardness on grain size and indentation size; this is done by always performing nanoindents in the center of individual grains and by varying the grain size and indentation depth systematically. The grain size effects on the different deformation mechanisms of nanocrystalline nickel were revealed by strain rate-controlled tension and nanoindentation experiments, which show that with decreasing grain size the strain rate sensitivity increases and the activation volume decreases, indicating increased grain boundary mediated deformation processes in nanocrystalline nickel. Creep experiments at room temperature revealed that in nanocrystalline nickel grain boundary sliding or diffusion along the interface may dominate at lower stress levels, but with increasing stresses the deformation process is mainly controlled by dislocation creep. In-situ bending experiments in an atomic force microscope revealed directly that grain boundary mediated deformation processes play a significant role in nanocrystalline nickel, which is also supported by the observation of grain coarsening and softening of nanocrystalline nickel caused by high pressure torsion.
85
Authors: L. Zhou, Ying Xue Yao, Shahjada Ahmed Pahlovy
Abstract: In material nanoindentation hardness testing, the hardness will decrease with the indentation depth or peak load increase, i.e. indentation size effect (ISE). There are several models and equations were proposed to describe ISE. But the variables self-inaccurate in these models and equations, it will affect the result trueness. Single crystal silicon was used for nanoindentation experiments, and max depths were obtained from these experiments. Combining Matlab software, residual areas were obtained by atomic force microscopy (AFM). Based on max depth and residual area, a new model—residual area max depth model was proposed for indentation size effect in nanoindentaion hardness. The new model perhaps can understand and describe ISE in indentation hardness better than other models and equations.
389
Showing 1 to 7 of 7 Paper Titles