Papers by Keyword: Initial Crack Length

Paper TitlePage

Authors: M. Abdul Razzaq, Ahmad Kamal Ariffin, Shahrum Abdullah, Z. Sajuri, A.E. Ismail, Azli Ariffin
Abstract: The life prediction information is useful for improving the component design methodology at the early developing stage. Many thick cylinders are subjected to complex cyclic loading spectrum ranging from small vibration to large load induction. This paper presents modeling of fatigue crack growth behavior in thick wall cylinder for outer surface cracked pipe subjected to internal pressure. There are many factors affecting fatigue crack growth such as; crack length, orientation of crack, thickens of the cylinder and the load ratio. Fatigue crack growth as consequence of service loads depends on many different contributing factors. With the help of a simulation fatigue crack growth in three-dimensional structures can either be predicted or explain for already existing failures. The simulation results showed that, more studies on the thick wall cylinder structure need to be performed in order to obtain more accurate fatigue life.
1337
Authors: Yun Chao Gu, Long Bin Liu, Shuai Cao, Hou Di Xiao, Ming Yun Lv
Abstract: The tearing behavior of fiber-reinforced laminated composite textile plays the key role in the decision of mechanics performance of high altitude airship envelop material, even directly deciding its safety and stability. This paper, based on typical woven fabricated fiber yarns’ characteristics of geometry and mechanics, adopts Euler-displacement deformation analysis to explore yarn bundles deformation effects on tearing behavior and strength of envelope material with prefabricated damage and crack. Also, models with prefabricated crack with different size and textile density are respectively built to find factors that affect tearing behavior and strength of envelope material. From tests, it can be observed that the built models for predicting its tearing strength are in conformity with the experimental data. Nonlinear relationship is reflected between the initial crack width or yarn bundles density with tearing strength. Conclusively, the methods and models adopted in this paper provide an effective and innovative mind on tearing behavior and strength of fiber reinforced envelope material and make the foundation for its engineering application.
1370
Showing 1 to 2 of 2 Paper Titles