Papers by Keyword: Load Separation Method

Paper TitlePage

Authors: Jae Sil Park, Chang Sung Seok
Abstract: In order to analyze the elastic-plastic fracture behavior of a structure, the fracture resistance curve of the material should be known. However, it is difficult to evaluate the fracture characteristics with an experiment on the piping system. Instead, the fracture toughness obtained from standard specimen tests is used to analyze the structure and assess the fracture characteristics of the total structure. It is known that toughness data from the standard specimen test are conservative to predict fracture behavior of the real piping. Thus the fracture resistance curve by the fracture test of the real scaled pipe specimen would be applied to the integrity evaluation for the piping system. However, it is not only difficult to perform but also very expensive to perform full-scale pipe tests. The objective of this thesis is to propose a method to estimate the fracture resistance curve of a pipe from the result of standard specimen fracture test. To estimate the fracture resistance curve for a pipe specimen, load – load-line displacement records of a standard specimen were transformed to those of the pipe specimen. The load ratio method was proposed in order to calculate the crack length from load – crack mouth opening displacement records for the pipe specimen. To prove the validity of this estimation results, fracture tests for pipe specimens were performed. Consequently the applicability of the proposed method was investigated by comparing estimated results with tested results.
541
Authors: Weon Keun Song, Jae Sil Park
Abstract: It is known that fracture characteristics are changed due to the geometric configuration. Also, it is known that toughness data obtained from the standard specimen test are conservative to predict fracture behavior of the real piping. Thus fracture behavior by tests of pipes would to be applied to the integrity evaluation for the piping system. However, fracture test with real pipe is not only difficult to perform but also very expensive, and requires lots of experience. So an estimation method of pipe’s fracture behavior is necessary to solve this problem. The objective of this thesis is to propose a method to estimate the fracture behavior of a pipe from the result of the standard specimen fracture test. For this, fracture tests for standard specimens and pipes are conducted. The resultant load - load-line displacement record of the standard specimen was transformed to that of a pipe by load separation method. To begin with, the load versus load-line displacement curve of a standard specimen extracted from a pipe is normalized by a geometry function of the CT specimen. Then this normalized curve was converted to pipe’s load versus displacement curve by a geometry function of pipe. To verify the constraint factor and the geometric function of pipe, finite element analyses were performed. To demonstrate the proposed method, experimental results of pipes are compared with predicted results. Calculated results from CT specimens are similar to experimental results of pipes. Therefore the transformability from a CT specimen to a pipe by load separation method is proved. Consequently the applicability of the proposed method was proved.
15
Authors: Young Suk Kim, Yu.G. Matvienko, H.C. Jeong
Abstract: The load separation method was employed to measure the pl η -factor, the growing crack length and the applied J-integral during the course of the test of small curved CT specimen of Z-2.5Nb pressure tube material. The effect of the notch tip radius of the notched (reference) CT specimen on the separation parameter was analyzed to predict the crack growing length in the precracked specimen. To avoid the effect of load relaxation in the reference specimen on the separation parameter and the crack growing length estimation, the load was assumed to be maximum and constant value behind the peak load in the reference curve.
449
Showing 1 to 3 of 3 Paper Titles