Papers by Keyword: Optimal Feed

Paper TitlePage

Authors: Yu Han Wang, Jing Chun Feng, Yu Hao Li, Ming Chen
Abstract: To alleviate the feed fluctuation and maintain a smooth feed in five-axis machining, this paper takes the following two constraints into account: (1) the machining dynamics, including the constraints of power, velocity and acceleration represented by upper bounds for each axis (2) the contour constraints of the tool path, including the linear distance of the segment and sharp corner at the segment junctions. With the analysis of these constraints, the optimal feed is derived and the corresponding adjusted interpolation algorithm is presented such that a smooth motion during the machining can be obtained. The presented algorithm is demonstrated by the simulation result.
873
Authors: Jing Chun Feng, Yu Hao Li, Yu Han Wang, Ming Chen
Abstract: To overcome the acceleration discontinuity and feed fluctuation of the conventional five-axis grinding interpolator, a jerk-limited acceleration is utilized and two aspects of constraints is taken into account: (1) the machining dynamics, including the constraints of power, velocity, acceleration and jerk represented by upper bounds for each axis (2) the contour constraints of linear segments, including the linear distance of the segment and sharp corner at the segment junctions. With the analysis of these constrains, the optimal feed for each segment and the joint feed at the segment junctions is derived. The corresponding adjusted interpolation algorithm with jerk-limited acceleration is presented such that a smooth motion during the machining can be maintained. The presented algorithm is demonstrated by the simulation result.
204
Authors: Jing Chun Feng, Yu Han Wang, Ming Chen, Jin Sen Wang
Abstract: NURBS interpolation has many advantages over the traditional linear or circular interpolation in high-speed machining. The existing work in this regard focuses on adaptive feed interpolation considering the chord error constraints and tangent acceleration limits. However, regardless of the dynamic characteristics of individual axis, performance will inevitably suffer when the system is called upon to execute a complex trajectory beyond the range of its capabilities. The intent of the present work is to provide an optimal feed interpolation method respecting both the chord error constraint and the drive constraint of each axis. A look-ahead scheme is applied with a moving window to augment the calculation efficiency for real-time application. Simulations are performed to verify the resulting feedrate, acc/dec profiles and the real-time performance of the proposed interpolator.
461
Showing 1 to 3 of 3 Paper Titles